19/6+13/4n=2/3n+1

Simple and best practice solution for 19/6+13/4n=2/3n+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 19/6+13/4n=2/3n+1 equation:



19/6+13/4n=2/3n+1
We move all terms to the left:
19/6+13/4n-(2/3n+1)=0
Domain of the equation: 4n!=0
n!=0/4
n!=0
n∈R
Domain of the equation: 3n+1)!=0
n∈R
We get rid of parentheses
13/4n-2/3n-1+19/6=0
We calculate fractions
684n^2/432n^2+1404n/432n^2+(-288n)/432n^2-1=0
We multiply all the terms by the denominator
684n^2+1404n+(-288n)-1*432n^2=0
Wy multiply elements
684n^2-432n^2+1404n+(-288n)=0
We get rid of parentheses
684n^2-432n^2+1404n-288n=0
We add all the numbers together, and all the variables
252n^2+1116n=0
a = 252; b = 1116; c = 0;
Δ = b2-4ac
Δ = 11162-4·252·0
Δ = 1245456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1245456}=1116$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1116)-1116}{2*252}=\frac{-2232}{504} =-4+3/7 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1116)+1116}{2*252}=\frac{0}{504} =0 $

See similar equations:

| -5.4-6.5b=6.3b-6.2 | | 22/8=p/55 | | 40=y/4+23 | | 7x(2x+3)-8x=10x+3x | | 3x-9=x-17 | | x-(8)π=π | | 43x=17x | | 4(5x+8)=192 | | 5x(x-3)-7(6-x)+29=50-3(8-x) | | 97x+1=98x | | 8+2x=-3/2x+1 | | p/24=250 | | 2-3x-5=15 | | -6+x/8=-13 | | 2.7k=-13.5 | | 45x+10=35x+30 | | (X+2)(x-4)=x^2+9 | | (3d)/(4)+5=11 | | 5(x-2)+7=22 | | -21-3m=-3(1-5m) | | −2(x+4)+14=15−3x | | 6(3x-2)=9(2x-1)+-3 | | 6(19)x=2,166 | | 7w+4+3w+11=77 | | -x+11x-16=74 | | 6(3x-2)=9(2x-1)+3 | | 6(3x-2)=9(2x-1)+3x | | 16q-4q-6q=12 | | (2x+1)(x+8)=180 | | 4(2x-6)=3(2x-4)+2x | | 3x/2+4=16 | | -y/7=-58 |

Equations solver categories