If it's not what You are looking for type in the equation solver your own equation and let us solve it.
191-4x^2=-20
We move all terms to the left:
191-4x^2-(-20)=0
We add all the numbers together, and all the variables
-4x^2+211=0
a = -4; b = 0; c = +211;
Δ = b2-4ac
Δ = 02-4·(-4)·211
Δ = 3376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3376}=\sqrt{16*211}=\sqrt{16}*\sqrt{211}=4\sqrt{211}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{211}}{2*-4}=\frac{0-4\sqrt{211}}{-8} =-\frac{4\sqrt{211}}{-8} =-\frac{\sqrt{211}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{211}}{2*-4}=\frac{0+4\sqrt{211}}{-8} =\frac{4\sqrt{211}}{-8} =\frac{\sqrt{211}}{-2} $
| 3x-38=7x-95+90 | | 4/5(10y-25)=8(y-3)-44 | | 47=-28–12x | | 3x−2=5x−143x−2=5x−14 | | 6y+9(-2/3)=0 | | -5(v+6)=-2v-48 | | (5x+22)+(7x-4)=90 | | 34=n-4 | | -2r-9=-25 | | 6u-14=4(u-4) | | y/5-13=7 | | 3x+39=-6x+12 | | 1/2x+2=1/2x+1 | | (3x+12)=(5×) | | (5x+4)=(3x+1) | | 5x+8=-2x+23 | | 6y=-9(-2/3) | | 2x+17=7x-15 | | 13x+9x-10=14x+40 | | 1/2=r/17 | | x+(x-12)+(2x+6)=180 | | 9=6x+3/5 | | -63+42x=3+9x | | 1.1x+1.2×-5.4=-10 | | x+(x+2)+(2x+6)=180 | | -9=2(u-2)+3u | | -9=2(u-2+3u | | W-2/2-w+5/3=-2 | | 3x^2-12x=-7 | | 6(v+7)+3v=24 | | 5+3=2s | | 90+9x=50-13x |