192=t(128-t)

Simple and best practice solution for 192=t(128-t) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 192=t(128-t) equation:



192=t(128-t)
We move all terms to the left:
192-(t(128-t))=0
We add all the numbers together, and all the variables
-(t(-1t+128))+192=0
We calculate terms in parentheses: -(t(-1t+128)), so:
t(-1t+128)
We multiply parentheses
-1t^2+128t
Back to the equation:
-(-1t^2+128t)
We get rid of parentheses
1t^2-128t+192=0
We add all the numbers together, and all the variables
t^2-128t+192=0
a = 1; b = -128; c = +192;
Δ = b2-4ac
Δ = -1282-4·1·192
Δ = 15616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15616}=\sqrt{256*61}=\sqrt{256}*\sqrt{61}=16\sqrt{61}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-16\sqrt{61}}{2*1}=\frac{128-16\sqrt{61}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+16\sqrt{61}}{2*1}=\frac{128+16\sqrt{61}}{2} $

See similar equations:

| 3(v-2)-6v=-3 | | 0.02*6.35=x*7 | | t(144-t)=224 | | (6n-20)+(5n+11)=(171-n) | | t(-t+144)=224 | | x/3+7=6+4 | | (x+2)(x+2)=81+(x+1)(x+1) | | x*x+(x+60)(x+60)=90000 | | 0.3x+1.7=0.4(x+5)−0.1x | | 19x-49=19x-49 | | 3.4−0.6x=2x−(0.4x+1) | | 60-50/x=1.67 | | 3x-15+2x-10=90 | | h(h+5)=66 | | x2,718=9 | | x^2,718=9 | | 6x-1/3=4x-13/18-3 | | 90x+30+10x+20=120x+30 | | (3x-15)+(2x-10)=90 | | -3=x+12/10-3x/10 | | a(a+2)=360 | | a=a*a-30 | | 200x-100x+200=-50x-40x+300 | | y=21-2× | | a(a)-30=a | | 11.00+9.00x=65.00 | | $11.00+$9.00x=$65.00 | | x+x+x+4x+20=-3x-30 | | 4.x-8=72 | | 30x+20x-100=30x+100 | | ŷ=10+30x. | | 12w-18=13w+18 |

Equations solver categories