If it's not what You are looking for type in the equation solver your own equation and let us solve it.
192x-3x^2+960=0
a = -3; b = 192; c = +960;
Δ = b2-4ac
Δ = 1922-4·(-3)·960
Δ = 48384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48384}=\sqrt{2304*21}=\sqrt{2304}*\sqrt{21}=48\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(192)-48\sqrt{21}}{2*-3}=\frac{-192-48\sqrt{21}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(192)+48\sqrt{21}}{2*-3}=\frac{-192+48\sqrt{21}}{-6} $
| 9=-r/3 | | X^4+25x^2+100=0 | | 9x1/3=+8 | | 3x+(-5x)=-2x | | 7x−6= 9x+6 | | 75=(x+5) | | 20+0.08(x-5)^2=0 | | 13x+9=19+6-x | | 2(2.5)(6(2.5)-3)+4(2.5)=x | | 3/x+2/(x+1)=3/5 | | -6x^2+16x-30=0 | | (.06x+.11x+.11x+.42x+.3x)=18,144 | | -6x+16x-30=0 | | (.06x+.11x+.11x+.42x+.3x)/5=18,144 | | 1.5n+n=45 | | 66+n17=76 | | 87/t-10=19 | | 4x+20=3x-55 | | 5(1+s)=-9s | | 10+7x=8x-6 | | x-3.1=6.15x | | -6(x+1)-13=25+4 | | x(-1)=5 | | (x/2)+6=-13 | | 1/6(y+42-15=-3 | | 44=1/2•h•(8+3) | | 80+x+x-25+x=325 | | -23x=45,x=- | | t-7.4=17.9 | | t-6.6=16.6 | | t-6=16.6 | | t-6=16.6.6 |