1936.44=x*(x*3)*(x*0.3)

Simple and best practice solution for 1936.44=x*(x*3)*(x*0.3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1936.44=x*(x*3)*(x*0.3) equation:



1936.44=x(x*3)(x*0.3)
We move all terms to the left:
1936.44-(x(x*3)(x*0.3))=0
We add all the numbers together, and all the variables
-(x(+x*3)(+x*0.3))+1936.44=0
We multiply parentheses ..
-(x(+0.9x^2))+1936.44=0
We calculate terms in parentheses: -(x(+0.9x^2)), so:
x(+0.9x^2)
We multiply parentheses
0x^2
We add all the numbers together, and all the variables
x^2
Back to the equation:
-(x^2)
We add all the numbers together, and all the variables
-1x^2+1936.44=0
a = -1; b = 0; c = +1936.44;
Δ = b2-4ac
Δ = 02-4·(-1)·1936.44
Δ = 7745.76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{7745.76}}{2*-1}=\frac{0-\sqrt{7745.76}}{-2} =-\frac{\sqrt{}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{7745.76}}{2*-1}=\frac{0+\sqrt{7745.76}}{-2} =\frac{\sqrt{}}{-2} $

See similar equations:

| 7(x-8)=14 | | 6x-3+4x+5=x | | 16y+20=6y | | x3-8=0 | | (x+8)/x=6 | | 2x-9+3x=46 | | 62+57+43+m=55 | | 9(z+4)-3(z-4)=3(z-3)+2(z-1) | | 4c-6=4- | | Y-4=x+1 | | 6/7w=231/7 | | 2x=5+x^2-8 | | 3(2a-1)=2-(a-3) | | x2-6x=-7 | | 6x^2=15× | | 3x=2-(8-x) | | 2x=5+(x^2-8) | | (4x+1)^2=(4x)^2 | | 12x^2-34x+24=0 | | 0.00021= | | x/9=-7/9 | | 2.5•m=30 | | -6z+9=5z+7 | | 4^(2x+1)=27 | | Y=2/5(x-4)+5 | | x2-10x-4=0 | | 5(2z-1)-2(z+8)=5(z+1) | | Y=0,5x+1 | | 24r=-3 | | -3(t-8)-(t+2)=10 | | y+2(3-2)=34 | | 5+x-4=2x-7 |

Equations solver categories