If it's not what You are looking for type in the equation solver your own equation and let us solve it.
196x^2=-588x
We move all terms to the left:
196x^2-(-588x)=0
We get rid of parentheses
196x^2+588x=0
a = 196; b = 588; c = 0;
Δ = b2-4ac
Δ = 5882-4·196·0
Δ = 345744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{345744}=588$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(588)-588}{2*196}=\frac{-1176}{392} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(588)+588}{2*196}=\frac{0}{392} =0 $
| 4x−2=3x+9 | | 4-7m=5 | | -4x+3+7x=-27 | | 4(4x-3)-3(5x+6)=4(9-x)+5(x+3) | | 14(2m+3)=-6m-10+5m | | 2(y+4)^2=8 | | 5(3k-7)=23 | | 5(x-1)^2=40 | | 8x+3Y=740 | | 3n+13=204 | | 9a-3-6a=24 | | 6y-21=3(y-5) | | 35-6w=w | | -21=6+9(f-3) | | X^2-5x-6.25=-6.25 | | 5(x+1)=-5x+45 | | 4z^2+7=12 | | -2(3y-6)=-18 | | 7w-19=4(w-4) | | X2+5x-76=0 | | 5/x=13 | | 11v=3v+24 | | 9+4(1-7b)=-32 | | 12y-11=19 | | 3(2c-2)+13=49 | | 3x+15=4x+26 | | N•n=48 | | -7+w/5=28 | | 3(3-c)-29=21c-4(5+6c) | | 5y2+11y-12=0 | | 3w-8=-23 | | -7=z2+1 |