19998=n(n+1)

Simple and best practice solution for 19998=n(n+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 19998=n(n+1) equation:



19998=n(n+1)
We move all terms to the left:
19998-(n(n+1))=0
We calculate terms in parentheses: -(n(n+1)), so:
n(n+1)
We multiply parentheses
n^2+n
Back to the equation:
-(n^2+n)
We get rid of parentheses
-n^2-n+19998=0
We add all the numbers together, and all the variables
-1n^2-1n+19998=0
a = -1; b = -1; c = +19998;
Δ = b2-4ac
Δ = -12-4·(-1)·19998
Δ = 79993
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{79993}}{2*-1}=\frac{1-\sqrt{79993}}{-2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{79993}}{2*-1}=\frac{1+\sqrt{79993}}{-2} $

See similar equations:

| 2x(3x)=54 | | (x+6)=16 | | 3x-5,5=11-x | | 1/5f-2/3=-1/5f-2/3 | | -81r=9 | | x=12+1/5 | | 02x-32/5=18 | | (X+15)/3=2x+20 | | 215=5+14x | | 3/5x=7/11 | | 600=2(2x-3)+2(x) | | 54=4a+5a | | 36/x+3=12 | | 16/x=1/10 | | 5x=1.25x/25 | | 3z/7+9=-7 | | 2x×x=338 | | 9E-05x2-0.145x=131.63 | | 2.6=13/x | | 3–7x=10–(x+1) | | § 3–7x=10–(x+1) | | (x+4)2=x2+16 | | (x-4)2=x2–8x–16 | | 3x+12=6x-94 | | 16-3x=-30 | | -2r^2+r+7=0 | | 3s^2-2s+5=0 | | 7x²+8x+4=0 | | 7/6=42x | | -0.016x^2+0.5x+4.5=0 | | x+2x+90+105=360 | | 4(z-3)=2z/9+22 |

Equations solver categories