If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19j^2+9j=0
a = 19; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·19·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*19}=\frac{-18}{38} =-9/19 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*19}=\frac{0}{38} =0 $
| -4(3x-9)=18-12 | | 3x+36=70 | | -6(1+3x)=36+3x | | 12p−5p=7 | | 11m2+7m-4=0 | | 5/6-2=-2/3x+1 | | 2u−2=2 | | 31-7x=-5(x-7) | | 47n2+5n=0 | | 3x+34=70 | | -1+k=-6(-4k+4) | | n2-21n=0 | | x–6=-15 | | 2x-6=155 | | n2-21=0 | | v2-10v+16=0 | | 3x/4+x=7 | | 0=12x^2-26x+20 | | x2-28x=0 | | n2-6=155 | | 2x–7=-9 | | z2-35z=0 | | Z-2z=0 | | x2-34x=0 | | 2x^2-14x-249=0 | | 0.93x-3.1+0.02x=12.1 | | 6000-25x=4000 | | 3x-26=2x-29 | | -x÷3=3 | | 0.8x+1.1=0.5x-1 | | 2/3x+8=15-1x | | -33+5a=7(1-5a) |