If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2+18x-14=0
a = 19; b = 18; c = -14;
Δ = b2-4ac
Δ = 182-4·19·(-14)
Δ = 1388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1388}=\sqrt{4*347}=\sqrt{4}*\sqrt{347}=2\sqrt{347}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{347}}{2*19}=\frac{-18-2\sqrt{347}}{38} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{347}}{2*19}=\frac{-18+2\sqrt{347}}{38} $
| 5x-13=-40 | | 12x2-3x-14=0 | | 90h+60=600 | | 15x2-5x-15=0 | | 7x2-3x+7=0 | | 20x2+11x+8=0 | | 3x2-3x+3=0 | | 3x2+18x+7=0 | | 6x2-19x-6=0 | | 10x2-5x-6=0 | | 11x2+20x-1=0 | | 19x2+11x-6=0 | | -7(6=d=49 | | x+3/2x-4=5 | | 5(2-1/2y)+3y=9 | | 18x2-8x+4=0 | | 20x2-16x-5=0 | | 14x2+14x-17=0 | | 6x2-4x+7=0 | | 3x2+12x+8=0 | | 11x2-10x-14=0 | | 3^(5x-2)=27 | | -12(.5)+h=-8.5 | | 4y=3y-15 | | 7+2x=-29 | | -3-x=18 | | -9+x/8=-12 | | 2(x+4)+x+1=3x+9 | | -8x-17=19 | | -124=6+6(7b+7) | | 9x2+15x+16=0 | | 5x2+x+1=0 |