If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2+3x-9=0
a = 19; b = 3; c = -9;
Δ = b2-4ac
Δ = 32-4·19·(-9)
Δ = 693
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{693}=\sqrt{9*77}=\sqrt{9}*\sqrt{77}=3\sqrt{77}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{77}}{2*19}=\frac{-3-3\sqrt{77}}{38} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{77}}{2*19}=\frac{-3+3\sqrt{77}}{38} $
| 13x2+7x-19=0 | | 7x2+8x-14=0 | | (p+11)/7=4 | | 16x2-14x-9=0 | | 26-6y+5=23 | | 17x2-3x+3=0 | | 6x2-12x-8=0 | | 19x2+10x-4=0 | | 2x2+8x-13=0 | | 5=25/(1.08)^x | | 5y-1/3+7=15 | | 2p/5+8=10 | | q+(q-20)+3q=180 | | 4x2+11x-45=0 | | 14x2+20x-18=0 | | 10x2+17x-10=0 | | 6x2+11x-5=0 | | 6x2-15x-5=0 | | 19x2-19x-11=0 | | 9x2+4x-17=0 | | 17x2-15x-14=0 | | 4x2+2x-16=0 | | 17x2-5x-3=0 | | 17x2+14x-13=0 | | 14x2-17x-7=0 | | 18x2+x+1=0 | | 15x2+3x-6=0 | | 16x2-9x-6=0 | | 10x2-4x-3=0 | | 3x2-8x+12=0 | | 16x2+7x-10=0 | | 5x2-17x-12=0 |