If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2+6x-3=0
a = 19; b = 6; c = -3;
Δ = b2-4ac
Δ = 62-4·19·(-3)
Δ = 264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{264}=\sqrt{4*66}=\sqrt{4}*\sqrt{66}=2\sqrt{66}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{66}}{2*19}=\frac{-6-2\sqrt{66}}{38} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{66}}{2*19}=\frac{-6+2\sqrt{66}}{38} $
| 3(5x+8)-7x=6x | | y-18.4=11.3* | | 7y+15=2y+55 | | (9t-6)/12-(8t+12)/12=2/3-t | | (7-x)^2=(x+3)^2 | | 1/4-5x-1/8=5-x/6 | | -x/33+x/22-10=0 | | -x/33=10-x/22 | | 7x=10+12x | | 16x2-7x-12=0 | | 10x2+12x-11=0 | | 9x2-1x-16=0 | | 9x2-x-16=0 | | 5x2+11x-8=0 | | 10x2-4x+12=0 | | 12x2-10x-8=0 | | 10x2+10x-18=0 | | 14x2+16x-17=0 | | 6x2+4x+14=0 | | 17x2+19x+19=0 | | 11x2-20x+10=0 | | 11x2-20x+110=0 | | 18x2-20x-15=0 | | 10x2+20x-13=0 | | 19x2-11x-1=0 | | 6x2+19x+3=0 | | 12x2-13x-20=0 | | 20x2-15x-13=0 | | 4x2-2x-7=0 | | 9x2-2x+7=0 | | 19x2-13x+7=0 | | 10x2-10x-2=0 |