If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2-23=183
We move all terms to the left:
19x^2-23-(183)=0
We add all the numbers together, and all the variables
19x^2-206=0
a = 19; b = 0; c = -206;
Δ = b2-4ac
Δ = 02-4·19·(-206)
Δ = 15656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15656}=\sqrt{4*3914}=\sqrt{4}*\sqrt{3914}=2\sqrt{3914}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3914}}{2*19}=\frac{0-2\sqrt{3914}}{38} =-\frac{2\sqrt{3914}}{38} =-\frac{\sqrt{3914}}{19} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3914}}{2*19}=\frac{0+2\sqrt{3914}}{38} =\frac{2\sqrt{3914}}{38} =\frac{\sqrt{3914}}{19} $
| x/5=1.8/3.6 | | 0=2f-f | | 2x/3-x=x/9-4/3 | | 7=-4y-3y | | 0=-j-3j | | -6=2c+c | | 34+5x=19 | | 5=-2e+3e | | -1=b-2b | | 10x+-9=7x+11 | | 20=4j+j | | h=|6+2|+3 | | 34+6x=19 | | 0=2p-9p | | 18x2-18=149 | | 10=10x-5x | | 5=9x-8x | | 6=9b-7b | | 6=9x+7x | | 4=6o-2o | | (40x)+(1.5x*40)+(2x*39)=13350 | | 13=10g+3g | | 13=10g | | (40x)+((1.5x)40)+((2x)39)=13350 | | 8=8p+4p | | 18n=50+10n | | 2x+2(x+3)=20 | | 1.7(15r-9.9)=46.7 | | 10+2y=16- | | 1/3x+1/4x=10 | | 5x2-50=10 | | 4x+8=4(-2+5) |