If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2=38+5=43
We move all terms to the left:
19x^2-(38+5)=0
We add all the numbers together, and all the variables
19x^2-43=0
a = 19; b = 0; c = -43;
Δ = b2-4ac
Δ = 02-4·19·(-43)
Δ = 3268
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3268}=\sqrt{4*817}=\sqrt{4}*\sqrt{817}=2\sqrt{817}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{817}}{2*19}=\frac{0-2\sqrt{817}}{38} =-\frac{2\sqrt{817}}{38} =-\frac{\sqrt{817}}{19} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{817}}{2*19}=\frac{0+2\sqrt{817}}{38} =\frac{2\sqrt{817}}{38} =\frac{\sqrt{817}}{19} $
| 4m^2+3m=-1 | | 4m^2+3m+1=0 | | X+5*y=40 | | 5x+1+62=18+11 | | 3x+37=4x+31 | | 16a-9=0 | | (3(8-z))/2=-z | | 2√2x+4=√3x+87 | | x+3x+(3×+25)=2125 | | x/2-9=25 | | √m-2=1 | | 12x=4(x+5 | | X+3x+25=2125 | | –4w=1−3w | | 1x-10=-6 | | -13=p+13 | | 5/8=22/x-6 | | –4g=–9−g | | 26f=52 | | –8−2c=6c+8 | | w/5+10=20 | | 8d+7=7+8d | | 3q+3=q+7 | | –4−6u=–7u | | 2.9x-7=5x+5 | | –2m+6=–2m+3 | | 8y=10+9y | | 4.6x+1.2=54.6x-0.8 | | –4+3n=3n−4 | | 5x-9+7x-3=180 | | x2=2704. | | 24=9j |