If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2=7x
We move all terms to the left:
19x^2-(7x)=0
a = 19; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·19·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*19}=\frac{0}{38} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*19}=\frac{14}{38} =7/19 $
| 16m-8-21m-77=84 | | (x+1/3)=4+(x/2) | | 3/4(2x+7)+3/8=1/2x-2/4 | | x+1/3=4+x/2 | | k(-5)=6(-5)+100k | | -80=10u=10 | | 3/8x+1=(25) | | 3/8x+1=-25 | | -7w-56=35 | | 1+7(12+10m)=-265 | | 2-n=3n+16 | | 5(5x+4)=44 | | 7-(1/2)x=1+x | | 198=9x | | 42=−7(z−3) | | 3/4=52/x | | u/7=13 | | −2x+10=−2(x+5) | | 55=5w+5 | | 40=12t+16 | | 5/13=t-6/10 | | 6x+24x=66 | | -2s=4 | | 22=-11n | | 12x2+192=0 | | x-5=2-9 | | 5-2÷3t=1÷9t+19 | | 1/3x+3=5/6x-18 | | 7x+14=50 | | (8x+8)°+(8x-20)°=180 | | 32x=1/5 | | n1=75 |