If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19y^2+22y=0
a = 19; b = 22; c = 0;
Δ = b2-4ac
Δ = 222-4·19·0
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-22}{2*19}=\frac{-44}{38} =-1+3/19 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+22}{2*19}=\frac{0}{38} =0 $
| 6p-5p=7 | | 3x-9=x+65 | | 2(x-+295)=500 | | 4h-6=h | | 16x+100=400 | | W=210+33t | | 6x+(4x+25)+55=180 | | 2x—60=16 | | 2(x-295)=500 | | 7e+3=59 | | 4/5-10x=25 | | 32=12+4(m-1) | | 5-w=4w | | 3x-4(2x+5)=15 | | 9x-4=6x-31 | | 3a+7a-2a= | | 4f-15=f+12 | | 4^b=73.7 | | 45-3y=10 | | 269z+22=26 | | x/6=48/72 | | 2b-4=8b-8 | | 11x-18=12-8x+7x | | 2x/7-3=11 | | 5a+6a=+10 | | 39.99+.45x=49.99+.40 | | 2x+-4=x+-3 | | |x-18|=0.25 | | –4−j=–j−4 | | 5-6x+17=3x-12 | | 3(c−66)=69 | | 15-2t=2(-7t+15) |