1=14000n(n+1)

Simple and best practice solution for 1=14000n(n+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1=14000n(n+1) equation:



1=14000n(n+1)
We move all terms to the left:
1-(14000n(n+1))=0
We calculate terms in parentheses: -(14000n(n+1)), so:
14000n(n+1)
We multiply parentheses
14000n^2+14000n
Back to the equation:
-(14000n^2+14000n)
We get rid of parentheses
-14000n^2-14000n+1=0
a = -14000; b = -14000; c = +1;
Δ = b2-4ac
Δ = -140002-4·(-14000)·1
Δ = 196056000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{196056000}=\sqrt{14400*13615}=\sqrt{14400}*\sqrt{13615}=120\sqrt{13615}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14000)-120\sqrt{13615}}{2*-14000}=\frac{14000-120\sqrt{13615}}{-28000} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14000)+120\sqrt{13615}}{2*-14000}=\frac{14000+120\sqrt{13615}}{-28000} $

See similar equations:

| (5n+1)/8=(3n-1)/4 | | 9=12-(6x+7)+5x | | 2x+5=-3+2x | | 15+6h=45 | | 3x-5x+12=8x+2x | | -16=-7v+3v | | X×x+15=x+45×x+25×x+40 | | -25=-5+10x | | 2-3/2k=1/8k+9 | | 4.2y-1.4×=2.1 | | -66+x=26-3x | | 8×90=8×9×n | | 2/3x+1/4x-11/x=0 | | 15=x-5-6x | | 4x+15=3x+110 | | 4y+y=11 | | 2.2v-3.4=1 | | 5z+7=0.8 | | 3(2x+2)=3x+4 | | -7=3y+20 | | n+11=3n+7-n | | -2u-3=3u=2 | | 123x=2 | | 3(2x+2=3x+4 | | -25=-2(9n+7) | | x2=21 | | 6x–3x+4–2x=5x+1 | | -6+2v=v-6 | | -15-4t=17 | | -7u+16=6(u+7) | | (x-46)+1/2x+(x-35)+x=360 | | (n+8)+(n+-12)=2n+-4 |

Equations solver categories