1c=9/5c+32

Simple and best practice solution for 1c=9/5c+32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1c=9/5c+32 equation:



1c=9/5c+32
We move all terms to the left:
1c-(9/5c+32)=0
Domain of the equation: 5c+32)!=0
c∈R
We add all the numbers together, and all the variables
c-(9/5c+32)=0
We get rid of parentheses
c-9/5c-32=0
We multiply all the terms by the denominator
c*5c-32*5c-9=0
Wy multiply elements
5c^2-160c-9=0
a = 5; b = -160; c = -9;
Δ = b2-4ac
Δ = -1602-4·5·(-9)
Δ = 25780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{25780}=\sqrt{4*6445}=\sqrt{4}*\sqrt{6445}=2\sqrt{6445}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-2\sqrt{6445}}{2*5}=\frac{160-2\sqrt{6445}}{10} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+2\sqrt{6445}}{2*5}=\frac{160+2\sqrt{6445}}{10} $

See similar equations:

| s+16-36=72 | | 16x-4=37 | | 4(v+3)-6v=32 | | 7m=5m-5 | | x+1+1=-2 | | 10x+27=x+81 | | 4/5n=36 | | 12x^+2x-2=0 | | 5x-28=x+40 | | X+5-2x=3-5x+2 | | 276+x=414 | | 6-5x=12-3x | | -14-9x=-8-7x | | 5(m-2)-3(2-m)32(m-2)-3(2-m)=32 | | 4^7x=315 | | 6x+30=8x-20 | | 25(x-2)=100 | | -2y=39 | | -1y=39 | | |3y-1|=14 | | 6n+45=-3 | | 2x-7=4x-14 | | x/3+x/2+x/4=39 | | |7x-21|=35 | | 163=x+21 | | 13=1.07^x+4 | | 6m-2m=-16 | | Y=100x+2,500 | | 9b–8=217 | | 3x^2+19x-424=0 | | 2(x-2)=9-3+6+8+3+7 | | 3(2v^2-4v+1)=0 |

Equations solver categories