If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1n+1.8=3/10n+22.8
We move all terms to the left:
1n+1.8-(3/10n+22.8)=0
Domain of the equation: 10n+22.8)!=0We add all the numbers together, and all the variables
n∈R
n-(3/10n+22.8)+1.8=0
We get rid of parentheses
n-3/10n-22.8+1.8=0
We multiply all the terms by the denominator
n*10n-(22.8)*10n+(1.8)*10n-3=0
We multiply parentheses
n*10n-228n+18n-3=0
Wy multiply elements
10n^2-228n+18n-3=0
We add all the numbers together, and all the variables
10n^2-210n-3=0
a = 10; b = -210; c = -3;
Δ = b2-4ac
Δ = -2102-4·10·(-3)
Δ = 44220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44220}=\sqrt{4*11055}=\sqrt{4}*\sqrt{11055}=2\sqrt{11055}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-210)-2\sqrt{11055}}{2*10}=\frac{210-2\sqrt{11055}}{20} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-210)+2\sqrt{11055}}{2*10}=\frac{210+2\sqrt{11055}}{20} $
| 13y-3=3y+17 | | n^2*n=20 | | 5 − 3 t=5 + 3 t | | n^2+n=10 | | 3k+k+12=0 | | (5 − 3 t)=(5 + 3 t) | | H=-2t÷12 | | H=-2t+12 | | 7y=3×1/2 | | 10+15t=15t-9t | | x8=10 | | (7-v)(5v+4)=0 | | 112=225-w | | -w+227=30 | | 300b+100(40-b)=8400 | | 300b+400-300b=8400 | | .0.7x+0.4=0.6x+2.4 | | 3=-a+1 | | 220=67-y | | P=4–(QxQ) | | 4z+9=5 | | 226=-y+175 | | (x3+3⁴x-3²3=2-3x+3x-9=x2-9) | | 7y=31/2 | | 203-w=30 | | 300p+840000-100p=8400 | | 3x-12/4+x/12=x/3-2 | | 7/6=-9/8t | | -u+188=142 | | 3/5z=1 | | 8x−164x−24=0 | | 6/5x+2/9=-1 |