If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1n^2-5n-2=0
We add all the numbers together, and all the variables
n^2-5n-2=0
a = 1; b = -5; c = -2;
Δ = b2-4ac
Δ = -52-4·1·(-2)
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{33}}{2*1}=\frac{5-\sqrt{33}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{33}}{2*1}=\frac{5+\sqrt{33}}{2} $
| (1/2)x+10=(1/4)x+54 | | 2(2x)+2(x)=240 | | 30°+90°+x=180° | | 3p-5/4=7 | | (x-5)^2=30 | | 5(4x-2)+8=1 | | 3(2x+8)=6(x+4) | | (1/2)x+10=(1/4)+54 | | 1.7q-3.6q+1.8=11.5 | | |7x-13=|5x+19| | | -60+8y+5=4(3y-4)-7 | | 42+x=7 | | X+2.4=5x | | x5=2 | | 5w-8w=9 | | x8x+10-5x=15 | | -3t2-15t+17=-6t2 | | 11(c-4)+4=2+c-42 | | Y=-2xX=5 | | 3x-3=9;9 | | 3/4x=2/5x | | 3x+16x=15 | | 7.5x+25=8.3x+5 | | y^2-50y=0 | | 178=52-6x | | y2-50y=0 | | 13/5=5/x | | 8x+6x-2=7x | | 3x-(8x+9)=7x-45 | | 1/3w+3=2/3w-5 | | 7+n/39=6 | | 2-3x=1x-6 |