If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1x(x-38)=180
We move all terms to the left:
1x(x-38)-(180)=0
We multiply parentheses
x^2-38x-180=0
a = 1; b = -38; c = -180;
Δ = b2-4ac
Δ = -382-4·1·(-180)
Δ = 2164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2164}=\sqrt{4*541}=\sqrt{4}*\sqrt{541}=2\sqrt{541}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-2\sqrt{541}}{2*1}=\frac{38-2\sqrt{541}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+2\sqrt{541}}{2*1}=\frac{38+2\sqrt{541}}{2} $
| 3x+1=2x^2+4x | | 1/5(x+0.5)+5.24=3/2x+7/10(x+2.2) | | 1x+7x=90 | | 6x+2/5-5x-3/2=5/4 | | z^2–12z–13=0 | | 0=12x-3x*x*x | | 3x(1-3x)^2-(3x-1)^3-(5x+1)^2=0 | | 160=60+(10+8)w | | f+3•3.14=7•3.14 | | 9-2×3+u=(27-3×8)(2)+u | | Y=16+0,4x | | 2(5x+9)=-6+4 | | 5(8+7)=5•x+5•7 | | m^2–18m–19=0 | | 8x2-2x=3 | | 10/3x-1=2 | | 8x+9-7=18 | | 5m+8+3(3m-3)=3(m+3) | | 7-49x^2=0 | | 5(3x+9)=-17+47 | | 3b-16=8b-6(b+1) | | p=15+55/33(100) | | 12x=6=12 | | 7+49x^2=0 | | r^2-r+20=0 | | 2x+10=4x-7+9 | | (2x+1)=14x+8+2x | | 2x+20=x+5 | | 7x+18=6x+1 | | d^2–12d+11=0 | | 6x-48=-8 | | 7/8x^2-1=0 |