1x+30+1x+2/5x+3/5x=360

Simple and best practice solution for 1x+30+1x+2/5x+3/5x=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1x+30+1x+2/5x+3/5x=360 equation:



1x+30+1x+2/5x+3/5x=360
We move all terms to the left:
1x+30+1x+2/5x+3/5x-(360)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
2x+2/5x+3/5x-330=0
We multiply all the terms by the denominator
2x*5x-330*5x+2+3=0
We add all the numbers together, and all the variables
2x*5x-330*5x+5=0
Wy multiply elements
10x^2-1650x+5=0
a = 10; b = -1650; c = +5;
Δ = b2-4ac
Δ = -16502-4·10·5
Δ = 2722300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2722300}=\sqrt{100*27223}=\sqrt{100}*\sqrt{27223}=10\sqrt{27223}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1650)-10\sqrt{27223}}{2*10}=\frac{1650-10\sqrt{27223}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1650)+10\sqrt{27223}}{2*10}=\frac{1650+10\sqrt{27223}}{20} $

See similar equations:

| x+(0.1)x=46000 | | 4x+20=80+× | | y=5/6*5+4 | | y=5/6*4+4 | | 8x−28=44 | | y=5/6*3+4 | | 72+114-3x=180 | | -4=s/5 | | 2x-1+1x+1x+5=180 | | -12x-20=10x+100 | | 8x+26=2x+2 | | 18/2-n=6 | | y=13-12 | | 10x+30=20x-70 | | x+70=160 | | a+5=-9 | | 2*5+5y=60 | | 5+1x=1+2x | | a-4*2=a | | 35=3.5(p) | | 13=x+9-9 | | 6(-6+x)=76+-2x | | x=2(x+4/3x)+0.875 | | 131+4-5x=180 | | x+5=(4x+4) | | 10x-(21-4x)=11-5(5x2) | | 1350r=54 | | P(x)=0,75 | | A350r=54 | | 54+14x=72 | | 3y=-12-y= | | 21=2x-21 |

Equations solver categories