1x-(1/5x)=288

Simple and best practice solution for 1x-(1/5x)=288 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1x-(1/5x)=288 equation:



1x-(1/5x)=288
We move all terms to the left:
1x-(1/5x)-(288)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1x-(+1/5x)-288=0
We add all the numbers together, and all the variables
x-(+1/5x)-288=0
We get rid of parentheses
x-1/5x-288=0
We multiply all the terms by the denominator
x*5x-288*5x-1=0
Wy multiply elements
5x^2-1440x-1=0
a = 5; b = -1440; c = -1;
Δ = b2-4ac
Δ = -14402-4·5·(-1)
Δ = 2073620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2073620}=\sqrt{4*518405}=\sqrt{4}*\sqrt{518405}=2\sqrt{518405}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1440)-2\sqrt{518405}}{2*5}=\frac{1440-2\sqrt{518405}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1440)+2\sqrt{518405}}{2*5}=\frac{1440+2\sqrt{518405}}{10} $

See similar equations:

| 4y-10=54 | | -10(2x-3)+7(3x-2)-6=5-9 | | 17x/4=-10 | | -59-15x=26-10x | | 41=2v+13 | | 1/2(2x^2)^3+((5x)^3)^2=0 | | 1x-1/5x=288 | | j^2+55=91 | | 23=x9;x=14 | | 3u+10=55 | | 15-×=2(x+3) | | 10w-4w=90 | | d+83=93 | | 5/7x-12=-47 | | 2s+5≥=49 | | a+6+a=-2 | | t^2+5=86 | | (-x/4)+25=49 | | 2x(+3)=4x+15 | | 7k^2+35=98 | | -7=7=f | | -1-2/5x=4+2/3x-3 | | 28+5=3x | | 3(a-5)=5(2a+11) | | 3y-9+3y=6 | | -12=10-4y | | V=3.14×r^2×r | | 20+x=x+56 | | -186-8x=3x+133 | | 13-2y=5y-8 | | 17=9n-1 | | -9p-9=-14-8p |

Equations solver categories