2(1/3x-3)+2=2/5x-2

Simple and best practice solution for 2(1/3x-3)+2=2/5x-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(1/3x-3)+2=2/5x-2 equation:



2(1/3x-3)+2=2/5x-2
We move all terms to the left:
2(1/3x-3)+2-(2/5x-2)=0
Domain of the equation: 3x-3)!=0
x∈R
Domain of the equation: 5x-2)!=0
x∈R
We multiply parentheses
2x-(2/5x-2)-6+2=0
We get rid of parentheses
2x-2/5x+2-6+2=0
We multiply all the terms by the denominator
2x*5x+2*5x-6*5x+2*5x-2=0
Wy multiply elements
10x^2+10x-30x+10x-2=0
We add all the numbers together, and all the variables
10x^2-10x-2=0
a = 10; b = -10; c = -2;
Δ = b2-4ac
Δ = -102-4·10·(-2)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-6\sqrt{5}}{2*10}=\frac{10-6\sqrt{5}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+6\sqrt{5}}{2*10}=\frac{10+6\sqrt{5}}{20} $

See similar equations:

| 2(2w+7)=4 | | 8x^2=4x+6 | | 24x^2+3x=-17 | | 11x-11+59=180 | | 1.9/0.4=x/28 | | 67+y=180 | | -6b−14=8b | | 5x-60-120=180 | | xx=41 | | x+(-5)=27 | | 2(5x10)=5x-40 | | (3^2x3^3)^4=3 | | B+10=2a-8 | | 7u/8=49 | | (9x+1)²=(x+5)² | | (x/0.5)+1=x | | 2x=3/8x+7/10 | | -4(d–8)+9=25 | | 5x-60=45 | | -3n+15+5n=-17 | | x/0.5+1=x | | 15-(4z+3=12 | | x^2+720x=-129600 | | 3(x+4)-8=5x-2(-1+x) | | -6(k+3)=-54 | | 2w/7=12 | | 5x-60+10x-120=180 | | 1/3=n+1/4 | | 288=149-u | | 10x-120=180 | | 5x-60^⁰=180 | | 9-6y=1 |

Equations solver categories