2(1/5)x=895

Simple and best practice solution for 2(1/5)x=895 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(1/5)x=895 equation:



2(1/5)x=895
We move all terms to the left:
2(1/5)x-(895)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2(+1/5)x-895=0
We multiply parentheses
2x^2-895=0
a = 2; b = 0; c = -895;
Δ = b2-4ac
Δ = 02-4·2·(-895)
Δ = 7160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7160}=\sqrt{4*1790}=\sqrt{4}*\sqrt{1790}=2\sqrt{1790}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1790}}{2*2}=\frac{0-2\sqrt{1790}}{4} =-\frac{2\sqrt{1790}}{4} =-\frac{\sqrt{1790}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1790}}{2*2}=\frac{0+2\sqrt{1790}}{4} =\frac{2\sqrt{1790}}{4} =\frac{\sqrt{1790}}{2} $

See similar equations:

| 8n-(5+8)=7 | | 7y-10=9y+10 | | 3-x+2=7-8x | | 2x+24+x+65=89 | | 0.6x-9.7=9.2 | | 5-(n-4)=3(n | | 5(2y+-1)=16 | | 15m-120=10m | | 2(3y−8)= 8 | | 5x-2+4x-9=16 | | 2x-124x+43=9x-26 | | 6x+79=9x | | 21=b-4b | | 7(4+b)=-7(-7-b) | | -4=-9+m | | 3-v=12•6v | | 0.5t+2=0.5 | | 88-3x=14x | | (12.25+x)*0.6=19.08 | | 2c+99=397 | | 4.4=8.6-0.7x | | 1n+8=3n | | 2/3x-5/8x=265/8 | | 35x=-5x | | 44+x30=99+x25 | | 2(x+5)=-3(2+2x) | | -4x-10=-5x | | 5x-2+4=22 | | 5x-2=-8x+3 | | -6x=-13.5 | | 7+6x-12=1 | | 0.8xX=1.5 |

Equations solver categories