If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(12t+3)t=6
We move all terms to the left:
2(12t+3)t-(6)=0
We multiply parentheses
24t^2+6t-6=0
a = 24; b = 6; c = -6;
Δ = b2-4ac
Δ = 62-4·24·(-6)
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{17}}{2*24}=\frac{-6-6\sqrt{17}}{48} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{17}}{2*24}=\frac{-6+6\sqrt{17}}{48} $
| 275+d+1,091=12 | | 5-(3-2y)=8 | | 5(3x+1)=42 | | 5.4=4.2x-3 | | -2p-62=90 | | 7x-12=12x-22 | | 8x-(-3x)+13=134 | | u-2.73=4.9 | | 3x-2(x-7)=19 | | 2x-5+2x-10=180 | | 16a^2+56a+49=-1 | | w-1.76=3.99 | | 2(x+2)-3=-5 | | 5=2n=-1 | | (2x-5)(2x-10)=180 | | 3x+4+x=6+-2+4x | | 1=-9+x | | -3(4x-8)+6=-30 | | 3x+4+x=6+4+4x | | 63-1x=5+1x | | -0.5=g-2.7 | | B-5+8b=4 | | h/4+15=16 | | 3x+4+x=6+0+4x | | 3(4x-1)+5=5x+2(10-1x) | | 5p^2+35p=0 | | 3x+4+x=6+2+4x | | -4(2x+9)+3x=4(x-3) | | -63n=-8.19 | | 6–(3+x)=10 | | 19-3s=10 | | 2i(3-2i)+4-i=-3(3-2i)+2i |