2(2/3)j=15

Simple and best practice solution for 2(2/3)j=15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(2/3)j=15 equation:



2(2/3)j=15
We move all terms to the left:
2(2/3)j-(15)=0
Domain of the equation: 3)j!=0
j!=0/1
j!=0
j∈R
We add all the numbers together, and all the variables
2(+2/3)j-15=0
We multiply parentheses
4j^2-15=0
a = 4; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·4·(-15)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*4}=\frac{0-4\sqrt{15}}{8} =-\frac{4\sqrt{15}}{8} =-\frac{\sqrt{15}}{2} $
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*4}=\frac{0+4\sqrt{15}}{8} =\frac{4\sqrt{15}}{8} =\frac{\sqrt{15}}{2} $

See similar equations:

| 17=5+x/7 | | 1/2(x+8)-0=2 | | (2x-6)^1/4=8 | | -w=-5+4w | | (x+2)(10)=x(14) | | x^2+6.25x+5.25=0 | | -1z=10 | | 100(1+x)+100(1+x)(1+x)+100(1+x)(1+x)(1+x)=0 | | X+133=63+x | | 3a-7=-3 | | 100(1+x)+100(1+x)(1+x)+100(1+x)(1+x)(1+x)=33.1 | | 100(1+x)+100(1+x)(1+x)+100(1+x)(1+x)(1+x)=33,1 | | 5(2x-10)+14÷2=19 | | .7x=9 | | 120=2x-x | | T-3(t+3/4)=2t+3 | | 13-6x=14x | | 4=2x–6 | | 37+.25x=82 | | X*(x/2)=x*0.5x | | 3+x/3=22 | | 3-5n=9n+17 | | 5x+24=-3x-8 | | X^-18x+74=0 | | 1+9(x-7)=1-8(x-2) | | y+9=25 | | -19+8v=9v | | 13-14f=61 | | 3/4b=-15 | | a/3+1=11 | | -8=-3h-11 | | 300=0.25+30x |

Equations solver categories