2(2/5x+8)=4(14-1/5x)

Simple and best practice solution for 2(2/5x+8)=4(14-1/5x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(2/5x+8)=4(14-1/5x) equation:



2(2/5x+8)=4(14-1/5x)
We move all terms to the left:
2(2/5x+8)-(4(14-1/5x))=0
Domain of the equation: 5x+8)!=0
x∈R
Domain of the equation: 5x))!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2(2/5x+8)-(4(-1/5x+14))=0
We multiply parentheses
4x-(4(-1/5x+14))+16=0
We multiply all the terms by the denominator
4x*5x+16*5x-1+14))-(4(+14))=0
We add all the numbers together, and all the variables
4x*5x+16*5x-1+14))-(414)=0
We add all the numbers together, and all the variables
4x*5x+16*5x=0
Wy multiply elements
20x^2+80x=0
a = 20; b = 80; c = 0;
Δ = b2-4ac
Δ = 802-4·20·0
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{6400}=80$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-80}{2*20}=\frac{-160}{40} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+80}{2*20}=\frac{0}{40} =0 $

See similar equations:

| 5x+130=360 | | 14x-12=114 | | (4x+1)+23=180 | | −1/4​ a−4=7/4​ a−3 | | X/5+x/7=3 | | 3d+15=3(-4) | | 3+6x=2(−x+7)−43 | | 5v+54=11v | | 42+-42=x | | 3(x)=3.75 | | -51x+80=4x-30 | | 10x+10+10x+102=5x-42+5x+50 | | 11x-12=9x2 | | 42-3x=9 | | 5n+10(62-n)=450 | | 7/1=s/20 | | 23-3b=8 | | 8+b=30(22) | | 3(h-79)=45 | | 7h-23=54 | | 7(r-90)=70 | | q/5+41=51 | | 5-3(2-x)-x=3 | | b-10+b+10=360 | | n/6+13=17 | | f/5+12=16 | | 13=-8+3u | | 11a+1=3 | | 3X4(2k+8)=24 | | z+4=3(z-2) | | -4y+20=6y+10 | | z+4=3(z-4) |

Equations solver categories