If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(2t+4)=(3/4)(24-8t)
We move all terms to the left:
2(2t+4)-((3/4)(24-8t))=0
Domain of the equation: 4)(24-8t))!=0We add all the numbers together, and all the variables
t∈R
2(2t+4)-((+3/4)(-8t+24))=0
We multiply parentheses
4t-((+3/4)(-8t+24))+8=0
We multiply parentheses ..
-((-24t^2+3/4*24))+4t+8=0
We multiply all the terms by the denominator
-((-24t^2+3+4t*4*24))+8*4*24))=0
We calculate terms in parentheses: -((-24t^2+3+4t*4*24)), so:We add all the numbers together, and all the variables
(-24t^2+3+4t*4*24)
We get rid of parentheses
-24t^2+4t*4*24+3
Wy multiply elements
-24t^2+384t*2+3
Wy multiply elements
-24t^2+768t+3
Back to the equation:
-(-24t^2+768t+3)
-(-24t^2+768t+3)=0
We get rid of parentheses
24t^2-768t-3=0
a = 24; b = -768; c = -3;
Δ = b2-4ac
Δ = -7682-4·24·(-3)
Δ = 590112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{590112}=\sqrt{144*4098}=\sqrt{144}*\sqrt{4098}=12\sqrt{4098}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-768)-12\sqrt{4098}}{2*24}=\frac{768-12\sqrt{4098}}{48} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-768)+12\sqrt{4098}}{2*24}=\frac{768+12\sqrt{4098}}{48} $
| -7x+28=14-28 | | (4n-15)=-n | | 6m+200=6m+500 | | 28-20x=35-13x | | -8x+8=-27 | | 7y+3=180 | | -6-10p=54 | | 90+70+4x=180 | | 12x=4(x+2) | | 289/15=7n-4/3n | | 1/2+(x+6)=18 | | k/4=-13 | | 4(n-7)-7=4(n+8) | | 7x+1=42 | | 390=650-8x | | 3/5(x-1)=3x-3 | | 8(3-a)=-2a | | 646/x=34 | | -20=-4x-6x,x | | -3+-6q=15 | | 3/4x-1/4=2 | | 8-3(2b-4)=2(b-5)+8+3b | | 8.5x+2.2(2x-5)=54 | | -3d+3=3d+12 | | 3/5(x+5)=33 | | 2/3y+y-4=-31 | | -2b+-10=-6 | | 10=c/9 | | -7-4(9x+8)=3 | | x^2+4x+2x=0 | | 2x10=3x-15 | | 8=-4+h |