2(2w+4)=8(w+6)w=

Simple and best practice solution for 2(2w+4)=8(w+6)w= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(2w+4)=8(w+6)w= equation:



2(2w+4)=8(w+6)w=
We move all terms to the left:
2(2w+4)-(8(w+6)w)=0
We multiply parentheses
4w-(8(w+6)w)+8=0
We calculate terms in parentheses: -(8(w+6)w), so:
8(w+6)w
We multiply parentheses
8w^2+48w
Back to the equation:
-(8w^2+48w)
We get rid of parentheses
-8w^2+4w-48w+8=0
We add all the numbers together, and all the variables
-8w^2-44w+8=0
a = -8; b = -44; c = +8;
Δ = b2-4ac
Δ = -442-4·(-8)·8
Δ = 2192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2192}=\sqrt{16*137}=\sqrt{16}*\sqrt{137}=4\sqrt{137}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-4\sqrt{137}}{2*-8}=\frac{44-4\sqrt{137}}{-16} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+4\sqrt{137}}{2*-8}=\frac{44+4\sqrt{137}}{-16} $

See similar equations:

| 3-5x-2(10-x)=1 | | 2x=x+52x=x+5. | | -15+y=2(4y-5)+30 | | 3(a+3)=33 | | 3(a+3)=33 | | 8x+7=3x-9 | | 6x=20-2x | | z(1+20/7)=540 | | 5(30-k)=105 | | 5(30-k)=105 | | 5(4x+7)=3(2x+6) | | 2(j+7=44 | | 2(j+7)=44 | | 8/5+2a/3=128/5 | | 88/5+2a/3=128/5 | | 1/3(9-2x)=-4 | | 4x2-13x+13=4x+9 | | -(5-x)^2=0 | | 5,2x/0,7=7,7 | | 6x2+25x-9=0 | | 8x3-14=10 | | X+2x+(10-2x)+(2x+1)=23 | | X2+13x+17=3x+1 | | X2-2x-11=4 | | X2-4x-13=6x-2 | | X2-3x+10=8 | | x4+x2+25=0 | | X2+5x-50=0 | | X2+12x+32=0 | | 0=3/4x+6 | | F=9,V=4,E=y | | 96=12x^2+4x |

Equations solver categories