If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(2x+1)2x=50
We move all terms to the left:
2(2x+1)2x-(50)=0
We multiply parentheses
8x^2+4x-50=0
a = 8; b = 4; c = -50;
Δ = b2-4ac
Δ = 42-4·8·(-50)
Δ = 1616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1616}=\sqrt{16*101}=\sqrt{16}*\sqrt{101}=4\sqrt{101}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{101}}{2*8}=\frac{-4-4\sqrt{101}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{101}}{2*8}=\frac{-4+4\sqrt{101}}{16} $
| x+(2x/10)=350 | | 6x+29=3x+123=180 | | 6(2g-1)=2g | | +3x+8=+50 | | -35=5(n+5) | | 2x+7(4x-2)=196 | | 7/2=c/8/7 | | Y^2x+5x=9 | | -6-3(2k+12)=18 | | 2x-3=129 | | x+(2x/10)=400 | | 36=9-1x | | −3(2x−5)=15−6x | | 7x+6(3x-14)=41 | | -9r-1=71 | | w^2-10=0 | | x^2+4x^2=153 | | 8+m/14=9 | | n/2-7=-10 | | 14x+26=4x+306 | | 0.75(8b+4)-1=4b-14 | | 30+4x=64x | | 4(-6+a)=-36 | | 14x+26=4x=306 | | c+12/28=-5 | | 2(x+2)+x=5+4(x-2) | | m^2=4/169 | | -5+5v=10 | | -16u+-3u+-16=10 | | 5x+2(6x+11)=141 | | -2j+3j+-5j=18 | | 4(x-5)=x+2(x-3) |