2(2x-3)(x+1)-5(x+1)(x-1)=2(x-2)(x-1)

Simple and best practice solution for 2(2x-3)(x+1)-5(x+1)(x-1)=2(x-2)(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(2x-3)(x+1)-5(x+1)(x-1)=2(x-2)(x-1) equation:


Simplifying
2(2x + -3)(x + 1) + -5(x + 1)(x + -1) = 2(x + -2)(x + -1)

Reorder the terms:
2(-3 + 2x)(x + 1) + -5(x + 1)(x + -1) = 2(x + -2)(x + -1)

Reorder the terms:
2(-3 + 2x)(1 + x) + -5(x + 1)(x + -1) = 2(x + -2)(x + -1)

Multiply (-3 + 2x) * (1 + x)
2(-3(1 + x) + 2x * (1 + x)) + -5(x + 1)(x + -1) = 2(x + -2)(x + -1)
2((1 * -3 + x * -3) + 2x * (1 + x)) + -5(x + 1)(x + -1) = 2(x + -2)(x + -1)
2((-3 + -3x) + 2x * (1 + x)) + -5(x + 1)(x + -1) = 2(x + -2)(x + -1)
2(-3 + -3x + (1 * 2x + x * 2x)) + -5(x + 1)(x + -1) = 2(x + -2)(x + -1)
2(-3 + -3x + (2x + 2x2)) + -5(x + 1)(x + -1) = 2(x + -2)(x + -1)

Combine like terms: -3x + 2x = -1x
2(-3 + -1x + 2x2) + -5(x + 1)(x + -1) = 2(x + -2)(x + -1)
(-3 * 2 + -1x * 2 + 2x2 * 2) + -5(x + 1)(x + -1) = 2(x + -2)(x + -1)
(-6 + -2x + 4x2) + -5(x + 1)(x + -1) = 2(x + -2)(x + -1)

Reorder the terms:
-6 + -2x + 4x2 + -5(1 + x)(x + -1) = 2(x + -2)(x + -1)

Reorder the terms:
-6 + -2x + 4x2 + -5(1 + x)(-1 + x) = 2(x + -2)(x + -1)

Multiply (1 + x) * (-1 + x)
-6 + -2x + 4x2 + -5(1(-1 + x) + x(-1 + x)) = 2(x + -2)(x + -1)
-6 + -2x + 4x2 + -5((-1 * 1 + x * 1) + x(-1 + x)) = 2(x + -2)(x + -1)
-6 + -2x + 4x2 + -5((-1 + 1x) + x(-1 + x)) = 2(x + -2)(x + -1)
-6 + -2x + 4x2 + -5(-1 + 1x + (-1 * x + x * x)) = 2(x + -2)(x + -1)
-6 + -2x + 4x2 + -5(-1 + 1x + (-1x + x2)) = 2(x + -2)(x + -1)

Combine like terms: 1x + -1x = 0
-6 + -2x + 4x2 + -5(-1 + 0 + x2) = 2(x + -2)(x + -1)
-6 + -2x + 4x2 + -5(-1 + x2) = 2(x + -2)(x + -1)
-6 + -2x + 4x2 + (-1 * -5 + x2 * -5) = 2(x + -2)(x + -1)
-6 + -2x + 4x2 + (5 + -5x2) = 2(x + -2)(x + -1)

Reorder the terms:
-6 + 5 + -2x + 4x2 + -5x2 = 2(x + -2)(x + -1)

Combine like terms: -6 + 5 = -1
-1 + -2x + 4x2 + -5x2 = 2(x + -2)(x + -1)

Combine like terms: 4x2 + -5x2 = -1x2
-1 + -2x + -1x2 = 2(x + -2)(x + -1)

Reorder the terms:
-1 + -2x + -1x2 = 2(-2 + x)(x + -1)

Reorder the terms:
-1 + -2x + -1x2 = 2(-2 + x)(-1 + x)

Multiply (-2 + x) * (-1 + x)
-1 + -2x + -1x2 = 2(-2(-1 + x) + x(-1 + x))
-1 + -2x + -1x2 = 2((-1 * -2 + x * -2) + x(-1 + x))
-1 + -2x + -1x2 = 2((2 + -2x) + x(-1 + x))
-1 + -2x + -1x2 = 2(2 + -2x + (-1 * x + x * x))
-1 + -2x + -1x2 = 2(2 + -2x + (-1x + x2))

Combine like terms: -2x + -1x = -3x
-1 + -2x + -1x2 = 2(2 + -3x + x2)
-1 + -2x + -1x2 = (2 * 2 + -3x * 2 + x2 * 2)
-1 + -2x + -1x2 = (4 + -6x + 2x2)

Solving
-1 + -2x + -1x2 = 4 + -6x + 2x2

Solving for variable 'x'.

Reorder the terms:
-1 + -4 + -2x + 6x + -1x2 + -2x2 = 4 + -6x + 2x2 + -4 + 6x + -2x2

Combine like terms: -1 + -4 = -5
-5 + -2x + 6x + -1x2 + -2x2 = 4 + -6x + 2x2 + -4 + 6x + -2x2

Combine like terms: -2x + 6x = 4x
-5 + 4x + -1x2 + -2x2 = 4 + -6x + 2x2 + -4 + 6x + -2x2

Combine like terms: -1x2 + -2x2 = -3x2
-5 + 4x + -3x2 = 4 + -6x + 2x2 + -4 + 6x + -2x2

Reorder the terms:
-5 + 4x + -3x2 = 4 + -4 + -6x + 6x + 2x2 + -2x2

Combine like terms: 4 + -4 = 0
-5 + 4x + -3x2 = 0 + -6x + 6x + 2x2 + -2x2
-5 + 4x + -3x2 = -6x + 6x + 2x2 + -2x2

Combine like terms: -6x + 6x = 0
-5 + 4x + -3x2 = 0 + 2x2 + -2x2
-5 + 4x + -3x2 = 2x2 + -2x2

Combine like terms: 2x2 + -2x2 = 0
-5 + 4x + -3x2 = 0

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
1.666666667 + -1.333333333x + x2 = 0

Move the constant term to the right:

Add '-1.666666667' to each side of the equation.
1.666666667 + -1.333333333x + -1.666666667 + x2 = 0 + -1.666666667

Reorder the terms:
1.666666667 + -1.666666667 + -1.333333333x + x2 = 0 + -1.666666667

Combine like terms: 1.666666667 + -1.666666667 = 0.000000000
0.000000000 + -1.333333333x + x2 = 0 + -1.666666667
-1.333333333x + x2 = 0 + -1.666666667

Combine like terms: 0 + -1.666666667 = -1.666666667
-1.333333333x + x2 = -1.666666667

The x term is -1.333333333x.  Take half its coefficient (-0.6666666665).
Square it (0.4444444442) and add it to both sides.

Add '0.4444444442' to each side of the equation.
-1.333333333x + 0.4444444442 + x2 = -1.666666667 + 0.4444444442

Reorder the terms:
0.4444444442 + -1.333333333x + x2 = -1.666666667 + 0.4444444442

Combine like terms: -1.666666667 + 0.4444444442 = -1.2222222228
0.4444444442 + -1.333333333x + x2 = -1.2222222228

Factor a perfect square on the left side:
(x + -0.6666666665)(x + -0.6666666665) = -1.2222222228

Can't calculate square root of the right side.

The solution to this equation could not be determined.

See similar equations:

| 1+x+x^2=0 | | 18x^2+19x+5=0 | | 1+x+x^2+x^3=0 | | 11x+x(x-12)=112 | | x^2-x-112=0 | | (12+11x+2x^2)=0 | | -2x^2-11x-12=0 | | 8x^2-9x+1=0 | | x^2-3xm+14=11 | | (2x+5)(2x-1)=3x^2+6x+3 | | x^2-3xm+14=m^2 | | 32x^2-16x+2=0 | | x^2-3m+14=m^2 | | 2x^2+12x-110=0 | | x^3+3x^2-18x-54=0 | | 120-4x=23x+24 | | 89-4x=2x+11 | | 10-9x=90-37x | | 2(3x-1)+4x=28 | | 3(x+5)+x=23 | | a*x^2+6*x-3=0 | | 3(6k+14)-12k(k-9)-3= | | 6/2*[2+1]=1 | | y=x^2-8x+16 | | 4x^2-30=0 | | 10x^2=540 | | 3x^2-13xy+14y^2=0 | | 12x^2+17xy+6y^2=0 | | 2x^2+17xy+30y^2=0 | | y=2x^2+3x-1 | | x+.8x=300 | | -3x-3=2 |

Equations solver categories