2(2x-5)=-2x(x-4)

Simple and best practice solution for 2(2x-5)=-2x(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(2x-5)=-2x(x-4) equation:



2(2x-5)=-2x(x-4)
We move all terms to the left:
2(2x-5)-(-2x(x-4))=0
We multiply parentheses
4x-(-2x(x-4))-10=0
We calculate terms in parentheses: -(-2x(x-4)), so:
-2x(x-4)
We multiply parentheses
-2x^2+8x
Back to the equation:
-(-2x^2+8x)
We get rid of parentheses
2x^2-8x+4x-10=0
We add all the numbers together, and all the variables
2x^2-4x-10=0
a = 2; b = -4; c = -10;
Δ = b2-4ac
Δ = -42-4·2·(-10)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{6}}{2*2}=\frac{4-4\sqrt{6}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{6}}{2*2}=\frac{4+4\sqrt{6}}{4} $

See similar equations:

| 25-(3x+5)=2(x+)+x | | l+4=3(l-2) | | (l÷7)-4=4 | | 12n-30=-9 | | 50-32=3.6(e-4) | | 4x+0=2x+9 | | -4(2x+5)x+2=-11 | | 75+15x+8x=165 | | 2+y=3+4 | | 6x+18+114=180 | | 0.15=p+0.5 | | 170+2x=215+1x | | 7x+17=2x+27 | | 1/2(16x+24)+3(2/3x-9)=-(x+3)-12 | | 9p-13=5 | | 19w−13−6w=−39 | | 0.3x-0.1(3-2x)=-2.3 | | x•2x=4.5 | | 7=(1/2)x+5 | | 4x+2+132+128+5x-11+4x-10=540 | | 75+23x=165 | | 6w+81=63 | | 5(1+2m)=1/28+20m) | | -2n+5=-17 | | 1/2b+3=3/2-1 | | 18x+5x+-1+8x=46 | | 46-y=179 | | 5(8n-6)=130 | | a+11/6=-1/42+a+11/7+12/7a | | 1/4(2(x-1)+18=x | | -8x+4(1+5x)=6x+11-5x | | 18x15=x30 |

Equations solver categories