2(2x-5)=-4x(x-1)

Simple and best practice solution for 2(2x-5)=-4x(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(2x-5)=-4x(x-1) equation:



2(2x-5)=-4x(x-1)
We move all terms to the left:
2(2x-5)-(-4x(x-1))=0
We multiply parentheses
4x-(-4x(x-1))-10=0
We calculate terms in parentheses: -(-4x(x-1)), so:
-4x(x-1)
We multiply parentheses
-4x^2+4x
Back to the equation:
-(-4x^2+4x)
We get rid of parentheses
4x^2-4x+4x-10=0
We add all the numbers together, and all the variables
4x^2-10=0
a = 4; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·4·(-10)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*4}=\frac{0-4\sqrt{10}}{8} =-\frac{4\sqrt{10}}{8} =-\frac{\sqrt{10}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*4}=\frac{0+4\sqrt{10}}{8} =\frac{4\sqrt{10}}{8} =\frac{\sqrt{10}}{2} $

See similar equations:

| 2x+27+22+x=13 | | 2+x=-10+2x | | 2x-7+12=3x+1 | | 2x-14+12=x+9 | | 2x+12+2x+10=22 | | 5^(x-2)=625 | | 15q-3=57 | | 7/12b-12=23 | | 9-8p=45 | | (2x)(-4)=56 | | 2q2-2q=100 | | 3y-24(1/2y-4=-2 | | -16=g+71 | | 2(5x+5)=4x(5x=5) | | x^2-4x+38=-x^2+16x-12 | | (x)=13.4 | | 14x-10=8+10x | | 1/2-1/6=5x+5/6 | | 18x-3=29-10x | | 12x-3=11-2x | | 2x+4=15(2) | | 8x+13=4x+45 | | 3x+2=x+24 | | 6=12x-11x=0 | | 5x-7+4x=56 | | x+-11/17=0 | | p^2+8p=84 | | 7x2+12x-4=0 | | Y^2-6y+48=0 | | 6-11m+2=22 | | 5h+1-4h=10 | | 11-7y+3=-7 |

Equations solver categories