If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(2x^2)=450
We move all terms to the left:
2(2x^2)-(450)=0
a = 22; b = 0; c = -450;
Δ = b2-4ac
Δ = 02-4·22·(-450)
Δ = 39600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39600}=\sqrt{3600*11}=\sqrt{3600}*\sqrt{11}=60\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{11}}{2*22}=\frac{0-60\sqrt{11}}{44} =-\frac{60\sqrt{11}}{44} =-\frac{15\sqrt{11}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{11}}{2*22}=\frac{0+60\sqrt{11}}{44} =\frac{60\sqrt{11}}{44} =\frac{15\sqrt{11}}{11} $
| 3.15=u/3 | | 4x-3(5x+6)=59 | | 5x+2-(x-4)=2x+12 | | (2x+7)=74 | | 417=h+-378 | | 6x-4+x=3x+56 | | 5=y/25 | | 4p=+48 | | i=5/13 | | -26=k/19 | | 2(x+2x)=450 | | 5x-4+4x+2=5x-20 | | d+241=655 | | 6y+3+2y+3=12y-14 | | 3x-6=56 | | k+478=968 | | -3(x+4)=6(-x—1) | | -1=-8w+3(w+8) | | 2(+3i)=(5-7i) | | 19=r/12 | | -3(x+4)=(-x-1) | | x/2=10=2 | | -1=8w+3(w+8) | | 9=u/29 | | -656=c-811 | | 2/5(5x+15)=x-2(7-3x) | | 8x(2x-3)=5x(x+4) | | u-790=-280 | | -2-(-4x+4)=-14 | | 1+35=-4(4x-9) | | 5y+4=2y=16 | | h-591=363 |