If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(2x^2-5)=3(2-3x^2)
We move all terms to the left:
2(2x^2-5)-(3(2-3x^2))=0
We multiply parentheses
-(3(2-3x^2))+4x^2-10=0
We calculate terms in parentheses: -(3(2-3x^2)), so:We add all the numbers together, and all the variables
3(2-3x^2)
We multiply parentheses
-9x^2+6
Back to the equation:
-(-9x^2+6)
4x^2-(-9x^2+6)-10=0
We get rid of parentheses
4x^2+9x^2-6-10=0
We add all the numbers together, and all the variables
13x^2-16=0
a = 13; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·13·(-16)
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{13}}{2*13}=\frac{0-8\sqrt{13}}{26} =-\frac{8\sqrt{13}}{26} =-\frac{4\sqrt{13}}{13} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{13}}{2*13}=\frac{0+8\sqrt{13}}{26} =\frac{8\sqrt{13}}{26} =\frac{4\sqrt{13}}{13} $
| 86m=213.21 | | 8(2x+5)-40=128 | | 2(3.6x-10)-2=-1.2x(3-6)+3x | | x-16/15=24/35 | | X/2+5+3x-10=3x-10 | | Y•7=7y | | 14+5y=2(25-2y) | | 250=37=v | | -10-7x=6x-10 | | X-26=5x+2 | | 73=3y+13 | | 42-w=177 | | X+2x^=0 | | 7x+8=4x+26 | | 5x+8(0)=3 | | 14=4x-7 | | 10x-16=9x-29 | | 17.99+86m=213.21 | | 5(0)+8y=3 | | (2x+24)(2x+18)=660 | | 3x+9+8x-25=28 | | x/3+7=11 | | -9(y-1)=4y-43 | | y2-5y/3=0 | | x/24=8/32 | | 1—5(15b−7)=3b−9 | | z2/3+5z/6=0 | | x−34)(x+5)=0x-34x+5=0 | | 4t–3=9 | | -15=3x+2× | | 5=-8w+3(w-5) | | 17+r=40 |