2(2y+2)=4y(3y+1)

Simple and best practice solution for 2(2y+2)=4y(3y+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(2y+2)=4y(3y+1) equation:



2(2y+2)=4y(3y+1)
We move all terms to the left:
2(2y+2)-(4y(3y+1))=0
We multiply parentheses
4y-(4y(3y+1))+4=0
We calculate terms in parentheses: -(4y(3y+1)), so:
4y(3y+1)
We multiply parentheses
12y^2+4y
Back to the equation:
-(12y^2+4y)
We get rid of parentheses
-12y^2+4y-4y+4=0
We add all the numbers together, and all the variables
-12y^2+4=0
a = -12; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-12)·4
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-12}=\frac{0-8\sqrt{3}}{-24} =-\frac{8\sqrt{3}}{-24} =-\frac{\sqrt{3}}{-3} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-12}=\frac{0+8\sqrt{3}}{-24} =\frac{8\sqrt{3}}{-24} =\frac{\sqrt{3}}{-3} $

See similar equations:

| 2(b+2)=-2b-8 | | 0.2+x=240 | | 145+x=35+x | | 3p=p+36 | | 2(2x-1)=3(3x+6) | | (2/5)x+(1/5)x=360 | | h+5/23=16 | | 16.2u+3.5=15.2u | | 10c=10c | | 15z+19=17z+1 | | 5/6-a=1/3 | | 9s-88=s+72 | | 5`2x+1-26(5x)+5=0 | | 7+x=0x | | 4-19k=-2k+19-18k | | 2p-35=3p-64 | | 8/9-a=1/3 | | -17u=12-19u | | 0.25=y÷8 | | 12.16-3.7s=-3.29-14s | | b+0.2-10=4.4 | | x/7+3-2x=-3 | | 6x+7=137x | | -9w-7=20-18w | | 16x+18=5x-24 | | -5+13t=12t | | 5x-26(5x)+25=0 | | x/6+15=3 | | 80=2×x+20 | | -2y+16-y=-2y-2 | | -4+2w=-w-10 | | 17=-y+20 |

Equations solver categories