2(3+x)+x(1-4x)+5=7x+4x+5

Simple and best practice solution for 2(3+x)+x(1-4x)+5=7x+4x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3+x)+x(1-4x)+5=7x+4x+5 equation:



2(3+x)+x(1-4x)+5=7x+4x+5
We move all terms to the left:
2(3+x)+x(1-4x)+5-(7x+4x+5)=0
We add all the numbers together, and all the variables
2(x+3)+x(-4x+1)-(11x+5)+5=0
We multiply parentheses
-4x^2+2x+x-(11x+5)+6+5=0
We get rid of parentheses
-4x^2+2x+x-11x-5+6+5=0
We add all the numbers together, and all the variables
-4x^2-8x+6=0
a = -4; b = -8; c = +6;
Δ = b2-4ac
Δ = -82-4·(-4)·6
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{10}}{2*-4}=\frac{8-4\sqrt{10}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{10}}{2*-4}=\frac{8+4\sqrt{10}}{-8} $

See similar equations:

| 4y-15=24 | | 4y=15=24 | | 4b-4=12 | | -6k+35=-3k-2(7+5k) | | x/7=6/12 | | x8+3=2 | | 2k+10=7 | | 13-n=2n-8 | | 7(x-1)=62 | | 9x=9/3x | | 13;3=m;6 | | 80+35x=395 | | 2/3a-3=1/3a+6 | | 50x=350 | | F(x)=1,5^x | | 4(4x-1.4)=8x-5.6 | | 13u−8u=20 | | 6p-2p+8=8p | | 10=17+2x | | x^2-26x+90=0 | | 2(x-4)=3(1+x | | 3(x-5)=64 | | 4(a-2)=33(a+4) | | 4(a-2)=33)a+4 | | 3x/4+4=6 | | 2b+-3=7 | | k-5/3=7/3 | | 3m+-6=12 | | 1-2x=-3-1x | | 1-4x=-2-1x | | x+เศษ1ส่วน2=เศษ3ส่วน4 | | -1(3x-4)=-5 |

Equations solver categories