If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(3g+2)=(1/2)(12g+8)
We move all terms to the left:
2(3g+2)-((1/2)(12g+8))=0
Domain of the equation: 2)(12g+8))!=0We add all the numbers together, and all the variables
g∈R
2(3g+2)-((+1/2)(12g+8))=0
We multiply parentheses
6g-((+1/2)(12g+8))+4=0
We multiply parentheses ..
-((+12g^2+1/2*8))+6g+4=0
We multiply all the terms by the denominator
-((+12g^2+1+6g*2*8))+4*2*8))=0
We calculate terms in parentheses: -((+12g^2+1+6g*2*8)), so:We add all the numbers together, and all the variables
(+12g^2+1+6g*2*8)
We get rid of parentheses
12g^2+6g*2*8+1
Wy multiply elements
12g^2+96g*8+1
Wy multiply elements
12g^2+768g+1
Back to the equation:
-(12g^2+768g+1)
-(12g^2+768g+1)=0
We get rid of parentheses
-12g^2-768g-1=0
a = -12; b = -768; c = -1;
Δ = b2-4ac
Δ = -7682-4·(-12)·(-1)
Δ = 589776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{589776}=\sqrt{16*36861}=\sqrt{16}*\sqrt{36861}=4\sqrt{36861}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-768)-4\sqrt{36861}}{2*-12}=\frac{768-4\sqrt{36861}}{-24} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-768)+4\sqrt{36861}}{2*-12}=\frac{768+4\sqrt{36861}}{-24} $
| 9z=54,12 | | 3/8+x=2 | | 2/3y+y/4=22 | | -8x=-16.8 | | -5(-7-x)=27+5x | | 0.5a=30 | | 2a+2=12-8a | | y+3/4=-5/6 | | 2b-90+b+45+b+3/2b+90=540 | | 0=5/2x+5 | | 56+2x+(180+2x)=180 | | 13-4(x+4)=12-3(x+5) | | 176=43-u | | -5.16+x=9.22 | | x/3+7=39 | | 4(2x+9)=-27+31 | | 161=-w+28 | | 9=a/7-2 | | x+8+6=-6 | | 2.5(x+2)=3.5x | | 10=6+v/7 | | x+8.5=-4.7 | | -19.9k=13.95-19k | | 5n+25+4n+29=63 | | 201-x=8 | | x-2.4=5.9 | | -6(2x-2)=-48 | | 3(2x5+)=-39+24 | | 3(x-5)+2=-16 | | -6x+24=6 | | 170=84-v | | -11y+19=-17-8y |