2(3x+3)=12x(x-3)

Simple and best practice solution for 2(3x+3)=12x(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3x+3)=12x(x-3) equation:



2(3x+3)=12x(x-3)
We move all terms to the left:
2(3x+3)-(12x(x-3))=0
We multiply parentheses
6x-(12x(x-3))+6=0
We calculate terms in parentheses: -(12x(x-3)), so:
12x(x-3)
We multiply parentheses
12x^2-36x
Back to the equation:
-(12x^2-36x)
We get rid of parentheses
-12x^2+6x+36x+6=0
We add all the numbers together, and all the variables
-12x^2+42x+6=0
a = -12; b = 42; c = +6;
Δ = b2-4ac
Δ = 422-4·(-12)·6
Δ = 2052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2052}=\sqrt{36*57}=\sqrt{36}*\sqrt{57}=6\sqrt{57}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-6\sqrt{57}}{2*-12}=\frac{-42-6\sqrt{57}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+6\sqrt{57}}{2*-12}=\frac{-42+6\sqrt{57}}{-24} $

See similar equations:

| 8(2x-5)=8 | | 5x+5+7x-6=83 | | 7b=6b-30 | | 110=(5x-25) | | 6j+4-8j-12=6j-3-6j+5 | | 5x-8=5(x-2 | | 18q-15q+4=7 | | –3x–30=6 | | |30-8x|=20 | | 5a+7=107 | | -3v=11=-8v=51 | | 2x+4+3x-3+2x+4=33 | | -8+7x=10x+10 | |  16 − 2t  =  5t + 9 | | 2-8(8x-64)=-19+3x | | |-4d|+8=16 | | 9u+7=8u | | −8(−5x−4)=-7x+56 | | -3/1(9x+42)-4x=-70+x | | -4b=+4=-4+4b | | x*1.0625=100 | | 6x-54=180 | | N+2=3x13 | | -1=-2x+3x+2 | | 3x+4x-7=13-3x | | 1/3(2r+9)=1-2r | | 5x-25=6x-50 | | 3r+5(r-2)=14 | | x÷3-4=11 | | –5z+4=–2−7z | | 4c-1=8 | | 5-2/5x=1/2x=-4 |

Equations solver categories