2(3x+4)=3x(x+4)

Simple and best practice solution for 2(3x+4)=3x(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3x+4)=3x(x+4) equation:



2(3x+4)=3x(x+4)
We move all terms to the left:
2(3x+4)-(3x(x+4))=0
We multiply parentheses
6x-(3x(x+4))+8=0
We calculate terms in parentheses: -(3x(x+4)), so:
3x(x+4)
We multiply parentheses
3x^2+12x
Back to the equation:
-(3x^2+12x)
We get rid of parentheses
-3x^2+6x-12x+8=0
We add all the numbers together, and all the variables
-3x^2-6x+8=0
a = -3; b = -6; c = +8;
Δ = b2-4ac
Δ = -62-4·(-3)·8
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{33}}{2*-3}=\frac{6-2\sqrt{33}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{33}}{2*-3}=\frac{6+2\sqrt{33}}{-6} $

See similar equations:

| -7(v+6)-3v=-92 | | 3(x+2)=-3(x+4) | | 3x+28+5x+52+2x-10x=180 | | 12x=45+15x | | 3(x-2)+(2x+1)=-14 | | 2y-1=3y-6 | | 3(x-2)+2x+1)=-14 | | 10x-36=x-45 | | 3x+2=6(x-1)+8-3x | | v=(3.14(4^2)(32) | | 120=6m | | X^4+100x^2+2304=0 | | -11=-2.2x | | 3m+17=28.7 | | 4-5y=3 | | 3x+14=30.5 | | 4m+4=28.8 | | 2x-8/42=42/x+6 | | 4m+20=45.6 | | 9^2x+1=18 | | 3y-6=y-2 | | 18+7v=13v | | 18+7v=13 | | 41-3x=8 | | 37.4=3.14r^2 | | 8.75x=100 | | 1/3x=3(2)^x | | -2(4-4)p=-40+4p | | 8(y-5)=2y+8 | | 4(2m-2)=28+4m | | 3=20x=100 | | 45+2e=180 |

Equations solver categories