2(3x+5)=6(x-2);x=

Simple and best practice solution for 2(3x+5)=6(x-2);x= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3x+5)=6(x-2);x= equation:



2(3x+5)=6(x-2)x=
We move all terms to the left:
2(3x+5)-(6(x-2)x)=0
We multiply parentheses
6x-(6(x-2)x)+10=0
We calculate terms in parentheses: -(6(x-2)x), so:
6(x-2)x
We multiply parentheses
6x^2-12x
Back to the equation:
-(6x^2-12x)
We get rid of parentheses
-6x^2+6x+12x+10=0
We add all the numbers together, and all the variables
-6x^2+18x+10=0
a = -6; b = 18; c = +10;
Δ = b2-4ac
Δ = 182-4·(-6)·10
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{141}}{2*-6}=\frac{-18-2\sqrt{141}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{141}}{2*-6}=\frac{-18+2\sqrt{141}}{-12} $

See similar equations:

| 3p–8=10 | | 3x-x-3=8x-9 | | 7x-3=3x=2 | | (6x+19)=(x+2) | | 3(3x+4)−5=-9x+13 | | 50+2x=150 | | 164=-5b-8(4b-2) | | (6x+19)=(x) | | 60=x+45 | | 9r=73;r=7 | | 4(3G-8)+7=2(g+4) | | y/9=17y=163 | | 10x-53=(-13/2x)+46 | | 27x+12=32 | | -9=3(y-2)-6y | | -96=8(2a+2) | | (356.7+227)+756.36=b+(227+756.36) | | 9w-63=198 | | 931.85+(s+714)=(931.85+870.35)+71 | | -5(-8+4a)=180 | | 80·n=11·80 | | 5=13v-8v | | 5(x-2)=4x+2x+20 | | 99+(63+b)=(99+63)+68 | | 3x-5x-9=7 | | 42+g=10+42 | | -96=6(2+3r) | | k=0+51 | | 82·(48−42)=v·48−82·42 | | 8x^2-22x=6 | | (13·24)·16=13·(q·16) | | -161=5a-8(-2a+7) |

Equations solver categories