If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(3x-1)-(2x+1)/7x-2=1/2
We move all terms to the left:
2(3x-1)-(2x+1)/7x-2-(1/2)=0
Domain of the equation: 7x!=0We add all the numbers together, and all the variables
x!=0/7
x!=0
x∈R
2(3x-1)-(2x+1)/7x-2-(+1/2)=0
We multiply parentheses
6x-(2x+1)/7x-2-2-(+1/2)=0
We get rid of parentheses
6x-(2x+1)/7x-2-2-1/2=0
We calculate fractions
6x+(-4x-2)/14x+(-7x)/14x-2-2=0
We add all the numbers together, and all the variables
6x+(-4x-2)/14x+(-7x)/14x-4=0
We multiply all the terms by the denominator
6x*14x+(-4x-2)+(-7x)-4*14x=0
Wy multiply elements
84x^2+(-4x-2)+(-7x)-56x=0
We get rid of parentheses
84x^2-4x-7x-56x-2=0
We add all the numbers together, and all the variables
84x^2-67x-2=0
a = 84; b = -67; c = -2;
Δ = b2-4ac
Δ = -672-4·84·(-2)
Δ = 5161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-67)-\sqrt{5161}}{2*84}=\frac{67-\sqrt{5161}}{168} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-67)+\sqrt{5161}}{2*84}=\frac{67+\sqrt{5161}}{168} $
| 2(3x-1)-(2x+)/7x-2=1/2 | | 2(3x-1)-(2x+)/7x-2=1/3 | | 3n-24=12 | | 2(x+0,5)=7,5-4(4,5-x) | | 8x=2=4x=10 | | 2(x+0.5)=7.5-4(4.5-x) | | 0.06(y-4)+0.04y=0.20y-0.01(20) | | 4x-16=2x-43 | | 3x=2x=5x | | 9z=+ | | 2.5(x-6)=2x-6 | | 2.5(2x-6)=x-6 | | 15x-10=180-8x+6 | | 6x=24x+4 | | 1/(x-1)+2=0 | | m4+m3+1=0 | | 4p+6=27+p | | 25=5x-(7+2x)+(-16-x) | | n/2+2n=100 | | 4z/9+3=6 | | 5k^-4k=-2 | | 2/(x+3)+1/x=0 | | n/3+7=14 | | 5(2x+4)-2(10+6x)=-36 | | 1300=100x+50(x-4) | | 12(4+5y/3)-10y=20 | | 5m-3=2m-5 | | 6(2n+9)=18 | | 0.06(y-2)+0.16y=0.14y-0.09(10) | | (x+1)x5=15 | | 4x+14=2x+42 | | 12x2-72x+12=0 |