2(3x-4)=3/2x+1

Simple and best practice solution for 2(3x-4)=3/2x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3x-4)=3/2x+1 equation:



2(3x-4)=3/2x+1
We move all terms to the left:
2(3x-4)-(3/2x+1)=0
Domain of the equation: 2x+1)!=0
x∈R
We multiply parentheses
6x-(3/2x+1)-8=0
We get rid of parentheses
6x-3/2x-1-8=0
We multiply all the terms by the denominator
6x*2x-1*2x-8*2x-3=0
Wy multiply elements
12x^2-2x-16x-3=0
We add all the numbers together, and all the variables
12x^2-18x-3=0
a = 12; b = -18; c = -3;
Δ = b2-4ac
Δ = -182-4·12·(-3)
Δ = 468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{468}=\sqrt{36*13}=\sqrt{36}*\sqrt{13}=6\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{13}}{2*12}=\frac{18-6\sqrt{13}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{13}}{2*12}=\frac{18+6\sqrt{13}}{24} $

See similar equations:

| 2w+3=(-7w-8) | | 12=-3x-2x^2 | | 2w+4=3w+2 | | -9-8r=8r-9 | | 1/2r+2(3/4r-1)=r+6 | | 24(5-y)+12y=24 | | 7(4K-8)=-26+9k | | f-35=47 | | w-4=100 | | 30=5/9w | | 3(d–8)–5=9(d+2)+1 | | (3x-1)/5=-2 | | 6n-5=66 | | (1÷3)×(x+1)=2 | | 8z-5=8z | | K+3k-7=4k-7 | | 4n=800 | | -10v+3v=-7v | | +4x^2+88x=0 | | 2(4h+3)+7=69 | | 6(k+7)=3(k-1) | | 4d+d=4d | | x+3x+124=180 | | b^2-8b-44=0 | | -j+j=0 | | 7(r-8)=3(r-10)+2 | | 4d+d=4d2 | | 2x=3x+17 | | -7x+5+8=-8 | | 5x-8x=-35 | | 15+6x=3(4x+5-2x) | | -3k=9-2k |

Equations solver categories