If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(3x^2)=18
We move all terms to the left:
2(3x^2)-(18)=0
a = 23; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·23·(-18)
Δ = 1656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1656}=\sqrt{36*46}=\sqrt{36}*\sqrt{46}=6\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{46}}{2*23}=\frac{0-6\sqrt{46}}{46} =-\frac{6\sqrt{46}}{46} =-\frac{3\sqrt{46}}{23} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{46}}{2*23}=\frac{0+6\sqrt{46}}{46} =\frac{6\sqrt{46}}{46} =\frac{3\sqrt{46}}{23} $
| xX0.15=10,000 | | 133-y=198 | | 4w+2=11 | | (5x+10)-360+180=270 | | 74=u^2+2 | | (5x+10)+360-180=270 | | 76=2y^2+12 | | (6x+7)(5+17)=90 | | (5x+10)-360-90=90 | | 79=2y^2+12 | | (5x+10)-360-270=90 | | -5(x−3)+7x=35 | | (5x+10)-360-180=90 | | 5(x−3)+7x=35 | | (6x+7)(5+17)=180 | | 3x^2+8=33 | | (5x+10)+360+90=90 | | 2(x+3.5)=-11 | | (5x+10)+360+270=90 | | (5x+10)+360+180=90 | | (5x+10)-360+180=90 | | -2/5x+7=-5x+173/5 | | (5x+10)+360-180=90 | | 23+x-5+6x=2x+13 | | -2/5x+7=5x+173/5 | | 4x+100+160=180 | | -3+6y-9+12y-15+y=y | | x*1.05=894.74 | | 5.5x+6(100)=6(x+5.5) | | (5x+10)-360+270=90 | | (5x+10)+360-270=90 | | 4(1+6x)=100 |