2(4-m)-3(1+m)=5-2(3m+4)

Simple and best practice solution for 2(4-m)-3(1+m)=5-2(3m+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(4-m)-3(1+m)=5-2(3m+4) equation:


Simplifying
2(4 + -1m) + -3(1 + m) = 5 + -2(3m + 4)
(4 * 2 + -1m * 2) + -3(1 + m) = 5 + -2(3m + 4)
(8 + -2m) + -3(1 + m) = 5 + -2(3m + 4)
8 + -2m + (1 * -3 + m * -3) = 5 + -2(3m + 4)
8 + -2m + (-3 + -3m) = 5 + -2(3m + 4)

Reorder the terms:
8 + -3 + -2m + -3m = 5 + -2(3m + 4)

Combine like terms: 8 + -3 = 5
5 + -2m + -3m = 5 + -2(3m + 4)

Combine like terms: -2m + -3m = -5m
5 + -5m = 5 + -2(3m + 4)

Reorder the terms:
5 + -5m = 5 + -2(4 + 3m)
5 + -5m = 5 + (4 * -2 + 3m * -2)
5 + -5m = 5 + (-8 + -6m)

Combine like terms: 5 + -8 = -3
5 + -5m = -3 + -6m

Solving
5 + -5m = -3 + -6m

Solving for variable 'm'.

Move all terms containing m to the left, all other terms to the right.

Add '6m' to each side of the equation.
5 + -5m + 6m = -3 + -6m + 6m

Combine like terms: -5m + 6m = 1m
5 + 1m = -3 + -6m + 6m

Combine like terms: -6m + 6m = 0
5 + 1m = -3 + 0
5 + 1m = -3

Add '-5' to each side of the equation.
5 + -5 + 1m = -3 + -5

Combine like terms: 5 + -5 = 0
0 + 1m = -3 + -5
1m = -3 + -5

Combine like terms: -3 + -5 = -8
1m = -8

Divide each side by '1'.
m = -8

Simplifying
m = -8

See similar equations:

| 20-4z=-40 | | 7/8-1/3 | | 17*17+25*25= | | -15+3s=-36 | | 2c+48=18 | | -6q+9=33 | | W/8+10=6 | | 3(x-.8)=4x+4 | | 12-3t=15 | | f(x)=12 | | 3x-10+2x+30=180 | | (9r-4)(9t+4)= | | 25y/20x | | 3f-12=-12 | | 4a^2+9=O | | 6x-2y+2y+12=180 | | 2c+3-3(c-8)=5+c | | -12-w=-4 | | 2x+17=3x-4 | | -3m+21=60 | | 4s^2+12sp+9p^2= | | 25c^2+30cf+9f^2= | | 8-3c=-25 | | -24+2d=-48 | | -3k+8=50 | | a^2-af-2f^2= | | 16(x^3)-32xy+1=0 | | -3h-9=30 | | 4(x^4)-16(x^2)y+x=0 | | 4a^4-9= | | (2x-4)(x-2)=12+8 | | 12-4b=20 |

Equations solver categories