If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(4n^2+17)=234
We move all terms to the left:
2(4n^2+17)-(234)=0
We multiply parentheses
8n^2+34-234=0
We add all the numbers together, and all the variables
8n^2-200=0
a = 8; b = 0; c = -200;
Δ = b2-4ac
Δ = 02-4·8·(-200)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80}{2*8}=\frac{-80}{16} =-5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80}{2*8}=\frac{80}{16} =5 $
| 2(x+8)=57.4 | | 5(4n+6)=130 | | c=5÷3 | | 5y+30=-15 | | 8(-6b+5)=-56 | | 16k^2-4(-2k^2+11k-4)=0 | | 3,330t=18 | | 9(n2+11)=180 | | 3,330÷18=t | | 22-(3c+4)=2(c+3)c | | -x^2=3x-16 | | 3,330÷t=18 | | (-4k+16k^2-4(-2k^2+11k-4))=-4 | | t÷3,330=18 | | (-4k+16k^2-4(-2k^2+11k-4)=-4 | | 6(8n-12)=168 | | (1/2)(-4k+16k^2-4(-2k^2+11k-4))=-2 | | 18=6+4w | | m-12=2184 | | (1/2)(-4k+16k^2-4(-2k^2+11k-4)=-2 | | 9(2n+6)=180 | | x+.2x=130 | | 5-5w=-9 | | 6x-7=10x-47 | | t÷18=3,330 | | x/2+15=32 | | 6k^2-12k+5=0 | | 8x-5x-5=14 | | 0.6•x=210 | | 3+6z=13=6z | | 11z=−66 | | -11z=−66 |