2(4w-1)=-10w(w-3)+4

Simple and best practice solution for 2(4w-1)=-10w(w-3)+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(4w-1)=-10w(w-3)+4 equation:



2(4w-1)=-10w(w-3)+4
We move all terms to the left:
2(4w-1)-(-10w(w-3)+4)=0
We multiply parentheses
8w-(-10w(w-3)+4)-2=0
We calculate terms in parentheses: -(-10w(w-3)+4), so:
-10w(w-3)+4
We multiply parentheses
-10w^2+30w+4
Back to the equation:
-(-10w^2+30w+4)
We get rid of parentheses
10w^2-30w+8w-4-2=0
We add all the numbers together, and all the variables
10w^2-22w-6=0
a = 10; b = -22; c = -6;
Δ = b2-4ac
Δ = -222-4·10·(-6)
Δ = 724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{724}=\sqrt{4*181}=\sqrt{4}*\sqrt{181}=2\sqrt{181}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{181}}{2*10}=\frac{22-2\sqrt{181}}{20} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{181}}{2*10}=\frac{22+2\sqrt{181}}{20} $

See similar equations:

| x^2-6x-2=-6 | | -15=3x=2x-5 | | 55=-5v | | 5x+9=2(3x-4) | | Y+3=5(x-1) | | 14-32=3(x-4) | | 4a+2a=360 | | 0=8y/12-48 | | 5x^2-9x+1=3 | | 2(5x-1)-7=3(x-1)+5-4 | | 3(x+5)x(2x-1)=0 | | 2(47-1)=3(z+2) | | 8x-12=3x-7 | | 2x+4=7x-5/9 | | x-27=-27-x | | 170x-1,000=30(5x-30) | | k+24k1;k=3 | | -3-6x-x=46 | | 3-9r=4r+10(11-12r) | | 3(2x-5)=-17+14 | | 5x+10=10x-20 | | 11=2x-x=4 | | (18x3)+6=10x | | p/5p=p | | R(x)=x(12-(x/1000)) | | 2x5-1204-120x3=0 | | 5x-16=64-2x | | 1/5w-3/2=-1/3 | | 18(3)+6=10x | | x^2-2x-2=13 | | (10^x)*(100^2x)=1000^5 | | 2x5-144-120x3=0 |

Equations solver categories