If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 2(4x + -1) * -3(x + -2) = 14 Reorder the terms: 2(-1 + 4x) * -3(x + -2) = 14 Reorder the terms: 2(-1 + 4x) * -3(-2 + x) = 14 Reorder the terms for easier multiplication: 2 * -3(-1 + 4x)(-2 + x) = 14 Multiply 2 * -3 -6(-1 + 4x)(-2 + x) = 14 Multiply (-1 + 4x) * (-2 + x) -6(-1(-2 + x) + 4x * (-2 + x)) = 14 -6((-2 * -1 + x * -1) + 4x * (-2 + x)) = 14 -6((2 + -1x) + 4x * (-2 + x)) = 14 -6(2 + -1x + (-2 * 4x + x * 4x)) = 14 -6(2 + -1x + (-8x + 4x2)) = 14 Combine like terms: -1x + -8x = -9x -6(2 + -9x + 4x2) = 14 (2 * -6 + -9x * -6 + 4x2 * -6) = 14 (-12 + 54x + -24x2) = 14 Solving -12 + 54x + -24x2 = 14 Solving for variable 'x'. Reorder the terms: -12 + -14 + 54x + -24x2 = 14 + -14 Combine like terms: -12 + -14 = -26 -26 + 54x + -24x2 = 14 + -14 Combine like terms: 14 + -14 = 0 -26 + 54x + -24x2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(-13 + 27x + -12x2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(-13 + 27x + -12x2)' equal to zero and attempt to solve: Simplifying -13 + 27x + -12x2 = 0 Solving -13 + 27x + -12x2 = 0 Begin completing the square. Divide all terms by -12 the coefficient of the squared term: Divide each side by '-12'. 1.083333333 + -2.25x + x2 = 0 Move the constant term to the right: Add '-1.083333333' to each side of the equation. 1.083333333 + -2.25x + -1.083333333 + x2 = 0 + -1.083333333 Reorder the terms: 1.083333333 + -1.083333333 + -2.25x + x2 = 0 + -1.083333333 Combine like terms: 1.083333333 + -1.083333333 = 0.000000000 0.000000000 + -2.25x + x2 = 0 + -1.083333333 -2.25x + x2 = 0 + -1.083333333 Combine like terms: 0 + -1.083333333 = -1.083333333 -2.25x + x2 = -1.083333333 The x term is -2.25x. Take half its coefficient (-1.125). Square it (1.265625) and add it to both sides. Add '1.265625' to each side of the equation. -2.25x + 1.265625 + x2 = -1.083333333 + 1.265625 Reorder the terms: 1.265625 + -2.25x + x2 = -1.083333333 + 1.265625 Combine like terms: -1.083333333 + 1.265625 = 0.182291667 1.265625 + -2.25x + x2 = 0.182291667 Factor a perfect square on the left side: (x + -1.125)(x + -1.125) = 0.182291667 Calculate the square root of the right side: 0.426956282 Break this problem into two subproblems by setting (x + -1.125) equal to 0.426956282 and -0.426956282.Subproblem 1
x + -1.125 = 0.426956282 Simplifying x + -1.125 = 0.426956282 Reorder the terms: -1.125 + x = 0.426956282 Solving -1.125 + x = 0.426956282 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.125' to each side of the equation. -1.125 + 1.125 + x = 0.426956282 + 1.125 Combine like terms: -1.125 + 1.125 = 0.000 0.000 + x = 0.426956282 + 1.125 x = 0.426956282 + 1.125 Combine like terms: 0.426956282 + 1.125 = 1.551956282 x = 1.551956282 Simplifying x = 1.551956282Subproblem 2
x + -1.125 = -0.426956282 Simplifying x + -1.125 = -0.426956282 Reorder the terms: -1.125 + x = -0.426956282 Solving -1.125 + x = -0.426956282 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.125' to each side of the equation. -1.125 + 1.125 + x = -0.426956282 + 1.125 Combine like terms: -1.125 + 1.125 = 0.000 0.000 + x = -0.426956282 + 1.125 x = -0.426956282 + 1.125 Combine like terms: -0.426956282 + 1.125 = 0.698043718 x = 0.698043718 Simplifying x = 0.698043718Solution
The solution to the problem is based on the solutions from the subproblems. x = {1.551956282, 0.698043718}Solution
x = {1.551956282, 0.698043718}
| 2(4x-1)-3(x-2)=14 | | 3x+5=7x-8 | | 3x-2=22 | | 2y+3=8 | | 7r+2=5(r-4) | | 7p+2=5p+8 | | 3(5x-1)=9 | | 10x+3-6x=-21 | | -3m+6-5(m-1)=-5m-(2m-4)+5 | | -11(x+3)+18=(8-3x)7 | | 2(w-(2w+4)+3)=2(w+1) | | 6(7x+18)=(x+8)4 | | 4(3x+6)=5(x-5) | | 7(x-11)=12x-122 | | 2x+3(x-4)=2(x-3) | | 28-32x=92 | | 19x-32=63 | | 9x+19=-35 | | -12x=28-16x | | 17x-35=271 | | 9x+13=-68 | | -15x-28=-73 | | -5x+8=48 | | 2(x+3)=-4(x+1) | | 73-x=18 | | 7x+32=4 | | -4x+5=-15 | | -5x-8=12 | | 3(2t-4)=20-2t | | 10x+7=27 | | 45-13x=58 | | 16x-55=41 |