2(4x+1)=1/2x-2

Simple and best practice solution for 2(4x+1)=1/2x-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(4x+1)=1/2x-2 equation:



2(4x+1)=1/2x-2
We move all terms to the left:
2(4x+1)-(1/2x-2)=0
Domain of the equation: 2x-2)!=0
x∈R
We multiply parentheses
8x-(1/2x-2)+2=0
We get rid of parentheses
8x-1/2x+2+2=0
We multiply all the terms by the denominator
8x*2x+2*2x+2*2x-1=0
Wy multiply elements
16x^2+4x+4x-1=0
We add all the numbers together, and all the variables
16x^2+8x-1=0
a = 16; b = 8; c = -1;
Δ = b2-4ac
Δ = 82-4·16·(-1)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{2}}{2*16}=\frac{-8-8\sqrt{2}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{2}}{2*16}=\frac{-8+8\sqrt{2}}{32} $

See similar equations:

| 3+12u=-14+11u-1 | | 4v+7/5=6v+2/10 | | -5(1+x)=-5 | | 3x-5=8x+65 | | 2(3x+5)=8x+26 | | h/15-45=120 | | -12q+4-6q=-17q+10 | | (-6x-6)+(8x-6)=0 | | —6=10(y+5) | | 8x+5+x=-4 | | 16y+44=124 | | 17,62x-3=9,68x+3,79 | | 6d=10d+4 | | d/3=4.2 | | -8x=4x-16 | | 2y+8=-24 | | -243=-9(10+x)+12x | | 1x+14=3x-14 | | -3x+12=4x23 | | -3x=78+3x | | -9b=-8b-20 | | -11k-13=-12 | | -4x+5=2x+53 | | 16+2q=6 | | w4-2=12 | | -8+3b=56+8 | | 5(x-1)+7(x-3)=146 | | -w+9=13 | | 3k+25=8k+15 | | 6r+26=4(2+6r) | | 4*5^2x=100 | | -8/9x-5/36x+1/4x=-56 |

Equations solver categories