2(4x-3)2x=2(7+5)+2x

Simple and best practice solution for 2(4x-3)2x=2(7+5)+2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(4x-3)2x=2(7+5)+2x equation:



2(4x-3)2x=2(7+5)+2x
We move all terms to the left:
2(4x-3)2x-(2(7+5)+2x)=0
We add all the numbers together, and all the variables
2(4x-3)2x-(212+2x)=0
We multiply parentheses
16x^2-12x-(212+2x)=0
We get rid of parentheses
16x^2-12x-2x-212=0
We add all the numbers together, and all the variables
16x^2-14x-212=0
a = 16; b = -14; c = -212;
Δ = b2-4ac
Δ = -142-4·16·(-212)
Δ = 13764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13764}=\sqrt{4*3441}=\sqrt{4}*\sqrt{3441}=2\sqrt{3441}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{3441}}{2*16}=\frac{14-2\sqrt{3441}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{3441}}{2*16}=\frac{14+2\sqrt{3441}}{32} $

See similar equations:

| ?=2m+10 | | 2-(4x-3)=10 | | w/5-9=-4 | | 2x-3=7x=23 | | 2(4x-3)2x=2(7+5) | | y+45/9=-3/5 | | -6m+12=-6m+10 | | y=-7+13 | | -35=-3x+8+5 | | 0.4^(x-1)=2x+20 | | 4n=2(2-3) | | 3.4=b+4.2 | | 3(x+2(-4(x+1)+5=5(x+3)-8 | | 3×(3x-9)=63 | | 0.5(8+4)=12-c | | 2(x-3)+5x=5(2x+1) | | 34/9+f=262/5 | | 3x-12=3(x-2)+1 | | 15kk=3 | | 9+3.5g=11-0.5g9 | | -14+2x+3=4x—13-7x | | 2/5=s+7/8 | | 9a=819a=81 | | 5x+21=12x+ | | n8=-11 | | r+4=36 | | 7(x+5)=12-80 | | d+3=39 | | r-3+2=2 | | 3b+1+5=6 | | 2y+6=1/3y-1.33333333333333333333333333 | | -13=4n+3+4 |

Equations solver categories